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1 Introduction
As discussed at length in chapters 1-3, some mathematical objects play a cen-
tral role in Schmeidler�s decision-theoretic ideas. In this chapter we provide
some more details on them.
One of the novelties of Schmeidler�s decision theory papers was the use

of general set functions, not necessarily additive, to model �ambiguous� be-
liefs. This provided a new and intriguing motivation for the study of these
mathematical objects, already studied from a different standpoint in cooper-
ative game theory, another Þeld where David Schmeidler has made important
contributions.
Here we overview the main properties of such set functions. Most of the

results we will present are known, though often not in the generality in which
we state and prove them. In the attempt to provide streamlined proofs and
more general statements, we sometimes came up with novel arguments.

2 Set Functions

2.1 Basic Properties

We begin by studying the basic properties of set functions. We use the setting
of cooperative game theory as most of these concepts originated there; their
decision-theoretic interpretation is treated in great detail in chapters 1-3 and
13, as well as in many of the articles collected in this book.
Let Ω be a set of players and Σ an algebra of admissible coalitions in Ω.

A (transferable utility) game is a real-valued set function ν : Σ → R with
the only requirement that ν (∅) = 0. Given a coalition A ∈ Σ, the number
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ν (A) is interpreted as its worth, that is, the overall value that his members
can achieve by teaming up.
The condition ν (∅) = 0 reßects the obvious fact that the worth of the

empty coalition is zero; a priori, nothing more is assumed in deÞning a game
ν. In the game theory literature several additional conditions have been
considered. In particular, a game ν is1

1. positive if ν (A) ≥ 0 for all A;
2. bounded if supA∈Σ |ν (A)| < +∞;
3. monotone if ν (A) ≤ ν (B) whenever A ⊆ B;
4. superadditive if ν (A ∪B) ≥ ν (A) + ν (B) for all pairwise disjoint sets
A and B;

5. convex (supermodular) if ν (A ∪B)+ ν (A ∩B) ≥ ν (A)+ ν (B) for all
A,B;

6. additive (a charge) if ν (A ∪B) = ν (A)+ν (B) for all pairwise disjoint
sets A and B.

All these conditions have natural game-theoretic interpretations (see, e.g.,
Moulin [44] and Owen [48]). For example, a game is monotone when larger
coalitions can achieve higher values, and it is superadditive when combining
disjoint coalitions results in more than proportional increases in value. As
to supermodularity, it is a stronger property than superadditivity and it can
be equivalently formulated as

ν (B ∪ C ∪ A)− ν (B ∪ C) ≥ ν (B ∪ A)− ν (B) , (1)

for all disjoint sets A, B, and C; hence, it can be interpreted as a property
of increasing marginal values (see Proposition 34 below).

Some assumptions of a more technical nature are also often assumed. For
example, a game ν is:

7. outer (inner, resp.) continuous at A if limn→∞ ν (An) = ν (A) whenever
An ↓ A (An ↑ A, resp.);

1In the sequel subsets of Ω are understood to be in Σ even where not stated explicitly
and they are referred to both as sets and as coalitions.
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8. continuous at A if it is both inner and outer continuous at A;

9. continuous if it is continuous at each A;

10. countably additive (a measure) if ν (
S∞
i=1Ai) =

P∞
i=1 ν (Ai) for all

countable collections of pairwise disjoint sets {Ai}∞i=1 such that
S∞
i=1Ai ∈

Σ.

We get important classes of games by combining some of the previous
properties. In particular, monotone games are called capacities, additive
games are called charges, and countably additive games are called measures.
Finally, positive games ν that are normalized with ν (Ω) = 1 are called
probabilities. Notice that capacities are always positive and bounded, while
positive superadditive games are always capacities.

Given a charge µ, its total variation norm kµk is given by

sup
nX
i=1

|µ (Ai)− µ (Ai−1)| , (2)

where the supremum is taken over all Þnite chains ∅ = A0 ⊆ A1 ⊆ · · · ⊆
An = Ω. Denote by ba (Σ) and ca (Σ) the vector spaces of all charges and
of all measures having Þnite total variation norm, respectively. By classic
results (see, e.g., [20] and [5]), a charge has Þnite total variation if and only if
it is bounded, and both ba (Σ) and ca (Σ) are Banach spaces when endowed
with the total variation norm. In particular, ca (Σ) is a closed subspace of
ba (Σ).
In view of these classic results, it is natural to wonder whether a useful

norm can be introduced in more general spaces of games. Aumann and
Shapley [2] showed that this is the case by introducing the variation norm
on the space of all games. Given a game ν, its variation norm kνk is given
by

sup
nX
i=1

|ν (Ai)− ν (Ai−1)| , (3)

where the supremum is taken over all Þnite chains ∅ = A0 ⊆ A1 ⊆ · · · ⊆
An = Ω. If ν is a charge, the variation norm kνk reduces to the total
variation norm. Moreover, all Þnite games are of bounded variation as they
have a Þnite number of Þnite chains.
Denote by bv (Σ) the vector space of all games ν having Þnite variation

norm. Aumann and Shapley [2] proved the following noteworthy properties.
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Proposition 1 A game belongs to bv (Σ) if and only if it can be written as
the difference of two capacities. Moreover, bv (Σ) endowed with the variation
norm is a Banach space, and ba (Σ) and ca (Σ) are closed subspaces of bv (Σ).2

In view of this result, we can say that bv (Σ) is a Banach environment for
not necessarily additive games that generalizes the classic spaces ba (Σ) and
ca (Σ). In the sequel we will mostly consider games belonging to it.

We close this section by observing that each game ν has a dual game
ν deÞned by ν (A) = ν (Ω) − ν (Ac) for each A. From the deÞnition it
immediately follows that:

� ν = ν;
� ν is monotone if and only if ν does;
� ν belongs to bv (Σ) if and only if ν does.
More important, dual games have �dual� properties relative to the origi-

nal game. For example:

� ν is convex if and only if ν is concave, i.e., ν (A ∪B) + ν (A ∩B) ≤
ν (A) + ν (B) for all A,B;

� ν is inner continuous at A if and only if ν is outer continuous at Ac.
For charges µ it clearly holds µ = µ. Without additivity, ν and ν are

in general distinct games (see Proposition 4) and sometimes it is useful to
consider the pair (ν, ν) rather than only ν.

Example 2 The duality between ν and ν does not hold for all properties.
For example, it is false that ν is superadditive if and only if ν is subad-
ditive. Consider the game ν on Ω = {ω1,ω2,ω3} given by ν (ωi) = 0 for
i = 1, 2, 3, ν (ωi ∪ ωj) = 5/6 for i, j = 1, 2, 3, and ν (Ω) = 1. Its dual ν is
given by ν (ωi) = 1/6 for i = 1, 2, 3, ν (ωi ∪ ωj) = 1 for i, j = 1, 2, 3, and
ν (Ω) = 1. While ν is superadditive, its dual is not subadditive. In fact,
ν (ω1 ∪ ω2) = 1 > ν (ω1) + ν (ω2) = 1/3. Normalized superadditive games
having subadditive duals are sometimes called upper probabilities (see [70]
and the references therein contained).

2Maccheroni and Ruckle [39] recently proved that (bv (Σ) , k·k) is a dual Banach space.
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2.2 The Core

Given a game ν, its core is the (possibly empty) set given by

core (ν) = {µ ∈ ba (Σ) : µ (A) ≥ ν (A) for each A and µ (Ω) = ν (Ω)} .
In other words, the core of ν is the set of all suitably normalized charges that
setwise dominate ν. Notice that

core (ν) = {µ ∈ ba (Σ) : ν ≤ µ ≤ ν}
= {µ ∈ ba (Σ) : µ (A) ≤ ν (A) for each A and µ (Ω) = ν (Ω)} ,

and so the core can be also regarded as the set of charges �sandwiched�
between the game and its dual, as well as the set of charges setwise dominated
by the dual game.
The core is a fundamental solution concept in cooperative game theory,

where it is interpreted as the set of undominated allocations (see [44] and
[48]). After Schmeidler�s seminal works, the core plays an important role in
decision theory as well, as detailed in chapters 1-3.
Mathematically, the interest of the core lies in the connection it provides

between games and charges, which, unlike games, are familiar objects in
measure theory. As it will be seen later, useful properties of games can be
deduced via the core from classic properties of charges.
The core is a convex subset of ba (Σ). More interestingly, it has the

following compactness property.3

Proposition 3 When nonempty, the core of a bounded game is weak∗-compact.

Proof. Let µ ∈ core (ν) and let k = 2 supA∈Σ |ν (A)|. For each A it clearly
holds µ (A) ≥ ν (A) ≥ −k. On the other hand,

µ (A) = µ (Ω)− µ (Ac) ≤ ν (Ω)− ν (Ac) ≤ 2 sup
A∈Σ

|ν (A)| ,

and so |µ (A)| ≤ k. By [20, p. 97], kµk ≤ 2k, which implies
core (ν) ⊆ {µ ∈ ba (Σ) : kµk ≤ 2k} .

By the Alaoglu Theorem (see [20, p. 424]), {µ ∈ ba (Σ) : kµk ≤ 2k} is weak∗-
compact. Therefore, to complete the proof it remains to show that core (ν)

3The weak∗-topology and its properties can be found in, e.g., [1], [20] and [52].
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is weak∗-closed. Let {µα}α be a net in core (ν) that weak∗-converges to
µ ∈ ba (Σ). Using the properties of the weak∗ topology, it is easy to see that
µ ∈ core (ν). Hence, core (ν) is weak∗-closed. ¥

Remark. When Σ is a σ-algebra, the condition of boundedness of the game
in Proposition 3 is superßuous by the Nikodym Uniform Boundedness The-
orem (see, e.g., [5, pp. 204-205]).

The core suggests some further taxonomy on games. A game ν is

11. balanced if its core is nonempty;

12. totally balanced if all its subgames νA have nonempty cores.4

We already observed that for a charge µ it holds µ = µ. This property
actually characterizes charges among balanced games.

Proposition 4 A balanced game ν is a charge if and only if ν = ν.

Proof. The �only if� part is trivial. As to the �if part�, let µ ∈ core (ν).
As ν ≤ µ ≤ ν, we have ν = µ = ν, as desired. ¥

The next result characterizes balanced games directly in terms of prop-
erties of the game ν. It was proved by Bondareva [7] and Shapley [62] for
Þnite games, and extended to inÞnite games by Schmeidler [55].

Theorem 5 A bounded game is balanced if and only if, for all λ1, ...,λn ≥ 0
and all A1, ..., An ∈ Σ, it holds

nX
i=1

λiν (Ai) ≤ ν (Ω) whenever
nX
i=1

λi1Ai = 1Ω. (4)

Proof. As the converse is trivial, we only show that ν is balanced provided
it satisÞes (4). By (4), ν (A) + ν (Ac) ≤ ν (Ω) for all A, so that ν ≤ ν. Let E
be the collection of all Þnite subalgebras Σ0 of Σ; for each Σ0 ∈ E set

c (Σ0) =
©
γ ∈ RΣ : ν (A) ≤ γ (A) ≤ ν (A) for each A ∈ Σ and γ|Σ0 is a charge

ª
,

4The subgame νA is the restriction of ν on the induced algebra ΣA = Σ ∩ A given by
νA (B) = ν (B) for all Σ 3 B ⊆ A.
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where RΣ is the collection of all set functions on Σ, and γ|Σ0 is the restriction
of γ on Σ0.
The set c (Σ0) is nonempty. In fact, as Σ0 is Þnite and the restriction

ν|Σ0 satisÞes (4), by [7] and [62] there exists a charge γ0 on Σ0 satisfying
ν (A) ≤ γ0 (A) ≤ ν (A) for each A ∈ Σ0. If we set

γ (A) =

½
γ0 (A) if A ∈ Σ0
ν (A) otherwise

we have γ ∈ c (Σ0), so that c (Σ0) 6= ∅.
Set a = infA∈Σ ν (A) and b = supA∈Σ ν (A). Both a and b belong to

R since ν is bounded, and so by the Tychonoff Theorem (see, e.g., [1, p.
52]) the set

Q
B∈Σ [a, b] is compact in the product topology of RΣ. Clearly,

c (Σ0) ⊆
Q
B∈Σ [a, b]. We want to show that c (Σ0) is actually a closed subset

of
Q
B∈Σ [a, b]. Let γt be a net in c (Σ0) such that γt → γ ∈ RΣ in the product

topology, i.e., γt (A)→ γ (A) for all A ∈ Σ. For each A and each t, we have
ν (A) ≤ γt (A) ≤ ν (A); hence, ν (A) ≤ γ (A) ≤ ν (A). For each t and for
all disjoint A and B in Σ0, we have γt (A ∪B) = γt (A) + γt (B); hence,
γ (A ∪B) = γ (A) + γ (B). We conclude that γ ∈ c (Σ0), and so c (Σ0) is a
closed (and so compact) subset of

Q
B∈Σ [a, b].

If Σ0 ⊆ Σ00, then c (Σ00) ⊆ c (Σ0). Hence, denoted by eΣ0 ∈ E the algebra
generated by a Þnite sequence

n
Σ
i

0

on
i=1
⊆ E , we have

∅ 6= c
³eΣ0´ ⊆ n\

i=1

c
³
Σ
i

0

´
.

In other words, the collection of compact sets {c (Σ0)}Σ0∈E satisÞes the Þnite
intersection property. In turn, this implies

T
Σ0∈E c (Σ0) 6= ∅ (see, e.g., [1,

p. 38]), which means that there exists a charge γ such that ν (A) ≤ γ (A) ≤
ν (A) for each A ∈ Σ. Since γ ∈QB∈Σ [a, b], the charge γ is bounded and so
it belongs to ba (Σ). We conclude that core (ν) 6= ∅, as desired. ¥

Remark. As observed by Kannai [34, pp. 229-230], for positive games The-
orem 5 also follows from a result of Fan [23] on systems of linear inequalities
in normed spaces.

Since countable additivity is a most useful technical property, it is natural
to wonder when it is the case that a nonempty core actually contains some
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measures. The next example of Kannai [34] shows that this might well not
happen.

Example 6 Let Ω = N and consider the game ν : 2N → R deÞned by

ν (A) =

½
0 Ac is inÞnite
1 else

Here core (ν) 6= ∅. In fact, let ∇ be any ultraÞlter containing the Þlter of all
sets having Þnite complements. The two-valued charge u∇ : 2N → R deÞned
by

u∇ (A) =
½
1 A ∈ ∇
0 else

belongs to core (ν). On the other hand, core (ν) ∩ ca (Σ) = ∅. For, suppose
per contra that µ ∈ core (ν) ∩ ca (Σ). For each n ∈ N we have µ (n) =
µ (N)− µ (N− {n}) = 0. The countable additivity of µ then implies µ (N) =P

n µ (n) = 0, which contradicts µ (N) = ν (N) = 1. N
For positive games it is trivially true that core (ν) ⊆ ca (Σ) provided ν is

continuous at Ω. In fact, for each monotone sequence An ↑ Ω it holds
ν (Ω) = µ (Ω) ≥ lim

n
µ (An) ≥ lim

n
ν (An) = ν (Ω) ,

for all µ ∈ core (ν). Hence, µ (Ω) = limn µ (An), which implies µ ∈ ca (Σ).
For signed games we have a more interesting result, based on [2, p. 173].

Proposition 7 Given a balanced game ν, it holds core (ν) ⊆ ca (Σ) provided
ν is continuous at both Ω and ∅.

Proof. Consider An ↑ Ω. Let µ ∈ core (ν). We want to show that µ (Ω) =
limn µ (An). Since µ (An) ≥ ν (An) for each n, by the continuity of ν at Ω
we have lim infn µ (An) ≥ lim infn ν (An) = ν (Ω). On the other hand, since
Acn ↓ ∅ and ν is continuous at ∅, we have:
lim sup

n
µ (An) = µ (Ω)− lim inf

n
µ (Acn) ≤ ν (Ω)− lim inf

n
ν (Acn) = ν (Ω) .

In sum,
lim sup

n
µ (An) ≤ ν (Ω) ≤ lim inf

n
µ (An) ,

and so µ (Ω) = limn µ (An), as desired. ¥

The next example shows that in general these continuity properties are
only sufficient for the core being contained in ca (Σ) .
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Example 8 Let λ be the Lebesgue measure on [0, 1] and let f : [0, 1] → R
be given by

f (x) =

 x 0 ≤ x ≤ 1
2

1
2

1
2
< x < 1

1 x = 1

Consider the game ν (A) = f (λ (A)) for each A. Though this game is not
continuous at Ω, we have core (ν) = {λ} ∈ ca (Σ). For, let µ ∈ core (ν). We
want to show that µ = λ. Given any A, there is a partition {Ai}ni=1 of A
such that λ (Ai) ≤ 1/2. Hence, µ (A) =

Pn
i=1 µ (Ai) ≥

Pn
i=1 λ (Ai) = λ (A).

Since A was arbitrary, this implies µ ≥ λ, and so µ = λ. N
Intuitively, this example works because the connection between the form

of the game ν = f (λ) and its core is a bit �loose.� Formally, there are gaps
between ν and the core�s lower envelope minµ∈core(ν) µ (A). For example, if
A is such that λ (A) = 3/4, then ν (A) = 1/2 < 3/4 = minµ∈core(ν) µ (A).
To Þx this problem, Schmeidler [57] introduced the following class of

games: a game ν is

13. exact if it is balanced and ν (A) = minµ∈core(ν) µ (A) for each A.

In other words, a game is exact if for each A there is µ ∈ core (ν) such
that ν (A) = µ (A). Exact games can thus be viewed as games in which there
is a tight connection between the form of the game and its core.
Schmeidler [57] provided a characterization of exact games in terms of the

game ν, related to (4). Moreover, he was able to prove that for exact games
continuity becomes a necessary and sufficient condition for the core to be a
subset of ca (Σ). To see why this is the case, we need a remarkable property
of weak∗-compact subsets of ca (Σ), due to Bartle, Dunford and Schwartz
(see [38] and the references therein contained). The result requires Σ to be
a σ-algebra, a natural domain for continuous set functions.

Lemma 9 If Σ is a σ-algebra, then a subset of ca (Σ) is weak∗-compact if
and only if it is weakly compact.

Remark. As the proof shows, this lemma is a consequence of the Dini
Theorem when K ⊆ ca+ (Σ).
Proof. It is enough to prove that a weak∗-compact subset of ca (Σ) is weakly
compact, the converse being trivial. Suppose K ⊆ ca (Σ) is weak∗-compact.
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Since K is bounded and weakly closed, by [20, Thm. IV.9.1] the set K is
sequentially weakly compact if and only if, given any An ↑ Ω, for each ε > 0
there is a positive integer n (ε) such that |µ (Ω)− µ (An)| < ε for all µ ∈ K
and all n ≥ n (ε). In other words, if and only if the measures in K are
uniformly countably additive.
For convenience, we only consider the case K ⊆ ca+ (Σ) (see, e.g., [38]

for the general case). For each n ≥ 1 consider the evaluation functions
φn : ba (Σ)→ R deÞned by

φn (µ) = µ (An) for each µ ∈ ba (Σ) .
Moreover, let φ : ba (Σ)→ R be deÞned by φ (µ) = µ (Ω) for each µ ∈ ba (Σ).
Both the function φ and each function φn are weak

∗-continuous, and the
sequence {φn}n≥1 is increasing on K. As K is weak∗-compact and

lim
n
φn (µ) = lim

n
µ (An) = µ (Ω) = φ (µ) for each µ ∈ K,

by the Dini Theorem (see, e.g., [1, p. 55]) φn converges uniformly to φ.
In turn, this easily implies the desired uniform countable additivity of the
measures in K, and so K is sequentially weakly compact. By the Eberlein-
Smulian Theorem (see, e.g., [1, p. 256]), K is then weakly compact as well.
¥

Using this lemma we can prove the following result, due to Schmeidler
[57] for positive games. Here |µ| (A) denotes the total variation of µ at A
(see, e.g., [1, p. 360])

Theorem 10 Let ν : Σ → R be an exact game deÞned on a σ-algebra Σ.
Then, the following conditions are equivalent:

(i) ν is continuous at Ω and ∅.

(ii) ν is continuous at each A.

(iii) core (ν) is a weakly compact subset of ca (Σ).

(iv) there exists λ ∈ ca+ (Σ) such that, given any A, for all ε > 0 there
exists δ > 0 such

λ (A) < δ =⇒ |µ| (A) < ε for all µ ∈ core (ν) . (5)
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Remark. Inspection of the proof shows that when ν is positive, in (i) we
can just assume continuity at Ω, while in (iv) we can choose λ so that it
belongs to core (ν).

Proof. (ii) trivially implies (i), which in turn implies core (ν) ⊆ ca (Σ)
by Proposition 7. By Proposition 3, core (ν) is weak∗-compact, and so, by
Lemma 9, it is weakly compact as well. Assume (iii) holds. Since core (ν) is
a weakly compact subset of ca (Σ), by [20, Thm. IV.9.2] there is λ ∈ ca+ (Σ)
such that (iv) holds. If ν is positive, following [12, p. 226] replace 1/2i by
1/mn at the bottom of [20, p. 307] to get λ ∈ core (ν).
It remains to show that (iv) implies (ii). Assume (iv). Since λ is countably

additive, (5) implies that each µ ∈ core (ν) is countably additive as well,
i.e., core (ν) ⊆ ca (Σ). By Lemma 9, core (ν) is weakly compact. We are
now ready to show that ν is continuous at each A. Per contra, suppose
there is some A at which ν is not continuous, i.e., there is a sequence, say
An ↑ A (the argument for An ↓ A is similar), and some η > 0 such that
|ν (An)− ν (A)| ≥ η. As ν is exact, for each n there is µn ∈ core (ν) such
that ν (An) = µn (An). By the Eberlein-Smulian Theorem (see, e.g., [1, p.
256]), core (ν) is sequentially weakly compact as well. Hence, there is a
suitable subsequence

©
µnk
ª
nk
of {µn}n such that µnk weakly converges to

some eµ ∈ core (ν). By [20, Thm. IV.9.5], this means that limk µnk (A) =eµ (A) for each A.
Now, consider:

ν (Ank) = µnk (Ank) = µnk (A)− µnk (A \ Ank) . (6)

Clearly, A \Ank ↓ ∅. Since core (ν) is weakly compact, by [20, Thm. IV.9.1]
the measures in core (ν) are uniformly countably additive, and so for each
ε > 0 there is k (ε) ≥ 1 such that |µ (A \ Ank)| < ε for all µ ∈ core (ν) and
all k ≥ k (ε). In particular,

¯̄
µnk (A \ Ank)

¯̄
< ε for all k ≥ k (ε). As ε is

arbitrary, this implies limk µnk (A \ Ank) = 0. By (6), we then have
lim
k
ν (Ank) = lim

k
µnk (Ank) = eµ (A) ≥ ν (A) . (7)

On the other hand, there exists a bµ ∈ core (ν) such that bµ (A) = ν (A) .
Hence,

ν (A) = bµ (A) = lim
k
bµ (Ank) ≥ lim

k
ν (Ank) . (8)

Putting together (7) and (8), we get ν (A) = limnk ν (Ank), thus contradicting
|ν (An)− ν (A)| ≥ η. We conclude that ν is continuous at A, as desired. ¥
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Point (iv) is noteworthy. It says that the continuity of ν guarantees the
existence of a positive control measure λ for core (ν), that is, a measure
λ ∈ ca+ (Σ) such that µ << λ for all µ ∈ core (ν).
This is a very useful property; inter alia, it implies that core (ν) can be

identiÞed with a subset of L1 (λ), the set of all (equivalence classes) of Σ-
measurable functions that are integrable with respect to λ. In fact, by the
Radon-Nikodym Theorem (see, e.g., [1, p. 437]) to each µ << λ corresponds
a unique f ∈ L1 (λ) such that µ (A) =

R
A
fdλ for all A.

Summing up:

Corollary 11 Let ν : Σ → R be an exact game deÞned on a σ-algebra Σ.
Then, ν is continuous at Ω and ∅ if and only if there is λ ∈ ca+ (Σ) such
that core (ν) is a weakly compact subset of L1 (λ).

Proof. Set ca (λ) = {µ ∈ ca : µ << λ}. By the Radon-Nikodym Theorem,
there is an isometric isomorphism between ca (λ) and L1 (λ) determined by
the formula µ (A) =

R
A
fdλ (see [20, p. 306]). Hence, a subset is weakly

compact in ca (λ) if and only if it is in L1 (λ) as well. ¥

It is sometimes useful to know when the core of a continuous game consists
of non-atomic measures. We close the section by studying this problem,
which also provides a further illustration of the usefulness of the control
measure λ.
In order to do so, we need to introduce null sets. Given a game ν, a set

N is ν-null if
ν (N ∪A) = ν (A) for all A ∈ Σ. (9)

The next lemma collects some basic properties of null sets.

Lemma 12 Given a game ν, let N be a ν-null set. Then:

(i) each subset B ⊆ N is ν-null;

(ii) ν (B) = 0 and ν (A \B) = ν (A) for any B ⊆ N ;
(iii) N is ν-null.

Proof. (i). Let B ⊆ N and let A be any set in Σ. By (9),

ν (B ∪ A) = ν (B ∪ A ∪N) = ν (A ∪N) = ν (A) ,

13



and so B is ν-null.
(ii) If we put A = ∅ in (9), we get ν (N) = 0. By (i), each B ⊆ N is

ν-null, so that ν (B) = 0 by what we have just established. It remains to
show that ν (A \B) = ν (A) for any B ⊆ N . By (i), A ∩B is ν-null. Hence,

ν (A \B) = ν ((A \B) ∪ (A ∩B)) = ν (A) ,

as desired.
(iii) Let A be any set in Σ. By (ii) we then have:

ν (A ∪N) = ν (Ω)− ν (Ac\N) = ν (Ω)− ν (Ac) = ν (A) ,

as desired. ¥

For a charge µ, a set N is µ-null if and only if |µ| (N) = 0. For, suppose
N is µ-null. We have (see, e.g., [1, p. 360]):

|µ| (N) = sup {|µ (B)|+ |µ (N\B)| : B ⊆ N} ,

and so point (ii) of Lemma 12 implies |µ| (N) = 0. Conversely, suppose
|µ| (N) = 0. Then, |µ (B)| = 0 for each B ⊆ N , and so

µ (A ∪N) = µ (A ∪N\A) = µ (A) + µ (N\A) = µ (A)

for each set A ∈ Σ. We conclude that N is µ-null, as desired.

Given two games ν1 and ν2, we say that ν1 is absolutely continuous with
respect to ν2 (written ν1 ¿ ν2) when each ν2-null set is ν1-null; we say that
the two games are equivalent (written ν1 ≡ ν2) when a set is ν1-null if and
only if it is ν2-null. In the special case of charges we get back to the standard
deÞnitions of absolute continuity (see, e.g., [1, p. 363]).
Given a balanced game ν, we have µ ¿ ν for each µ ∈ core (ν). For, let

m ∈ core (ν) and suppose N is ν-null. For each A ⊆ N , we have m (A) ≥
ν (A) = 0, and m (Ac) ≥ ν (Ac) = ν (Ω) = m (Ω) = m (A) +m (Ac). Hence,
m (A) = 0 for all A ⊆ N , namely, |m| (N) = 0. For continuous exact games
we have the following deeper result, due to Schmeidler [57, Thm 3.10], which
provides a further useful property of the control measure λ.

Lemma 13 Given an exact and continuous game ν deÞned on a σ-algebra
Σ, let λ be the control measure of Theorem 10. Then, ν ≡ λ.

14



Proof. By [20, Thm. IV.9.2], we have

λ =
∞X
n=1

2−n

kn

knX
i=1

|µni | (10)

with each µni ∈ core (ν). Let N be ν-null. As µ << ν for each µ ∈ core (ν),
N is µ-null for each µ ∈ core (ν). Hence, |µ| (N) = 0 for all µ ∈ core (ν). By
(10), λ (N) = 0. Therefore N is λ-null.
Conversely, suppose λ (N) = 0. As µ << λ for each µ ∈ core (ν), we have

|µ| (N) = 0 for each µ ∈ core (ν). By exactness, there are µ, µ0 ∈ core (ν)
such that:

ν (N ∪ F ) = µ (N ∪ F ) = µ (F ) ≥ ν (F ) = µ0 (F ) = µ0 (N ∪ F ) ≥ ν (N ∪ F )
and so N is ν-null. We conclude that ν ≡ λ, as desired. ¥
A game ν is non-atomic if for each ν-nonnull set A there is a set B ⊆

A such that both B and A\B are ν-nonnull. In particular, a charge µ is
non-atomic if and only if for each |µ| (A) > 0 there is B ⊆ A such that
0 < |µ| (B) < |µ| (A). In turn, this is equivalent to require that for each
µ (A) 6= 0 there is B ⊆ A such that both µ (B) 6= 0 and µ (A\B) 6= 0 (see [5,
pp. 141-142]).
We can now state and prove the announced result on �non-atomic� cores.

Proposition 14 Let ν be a continuous exact game deÞned on σ-algebra Σ.
Then, ν is non-atomic if and only if core (ν) consists of non-atomic measures.

Proof. �If� part. Suppose ν is non-atomic. By Lemma 13, λ as well is
non-atomic. In turn, this implies that each µ ∈ core (ν) is non-atomic. In
fact, let |µ| (A) 6= 0 for some A, so that λ (A) > 0. Since λ is non-atomic,

there is a partition A11/2, B
1
1/2 of A such that λ

³
A11/2

´
= λ

³
B11/2

´
= 1

2
λ(A)

(see [5, Thm 5.1.6]). If 0 < |µ|
³
A11/2

´
< |µ| (A) or 0 < |µ|

³
B11/2

´
<

|µ| (A), we are done. Suppose, in contrast, that either |µ|
³
A11/2

´
= |µ| (A)

or |µ|
³
B11/2

´
= |µ| (A). Without loss, let |µ|

³
A11/2

´
= |µ| (A). Let A21/2

and B21/2 be a partition of A
1
1/2 such that λ

³
A21/2

´
= λ

³
B21/2

´
= 1

2
λ(A11/2).

If 0 < |µ|
³
A21/2

´
< |µ| (A11/2) or 0 < |µ|

³
B21/2

´
< |µ| (A11/2), we are done.
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Suppose, in contrast, that either |µ|
³
A21/2

´
= |µ| (A11/2) or |µ|

³
B21/2

´
=

|µ| (A11/2). Without loss, let |µ|
³
A21/2

´
= |µ| (A11/2). By proceeding in this

way, either we Þnd a set B ⊆ A such that 0 < |µ| (B) < |µ| (A) or we can
construct a chain

n
An1/2

o
n≥1

such that λ
³
An1/2

´
= 1

2n
λ(A) and |µ|

³
An1/2

´
=

|µ| (A) for all n ≥ 1. Hence, being
T
n≥1A

n
1/2 ∈ Σ, λ

³T
n≥1A

n
1/2

´
= 0 and

|µ|
³T

n≥1A
n
1/2

´
= |µ| (A) > 0. Since µ¿ λ, this is impossible, and so there

exists some set Σ 3 B ⊆ A such that 0 < |µ| (B) < |µ| (A). We conclude
that µ is non-atomic, as desired.
�Only if.� Suppose that each µ ∈ core (ν) is non-atomic. Set λn =

(2−n/kn)
Pkn

i=1 |µni | in (10). Then, λ =
P∞

n=1 λn. Each positive measure λn is
non-atomic. For, suppose λn (A) > 0. There is some |µni | such that |µni | (A) >
0. Hence, there is B ⊆ A such that |µni | (B) > 0 and |µni | (A\B) > 0. Since
λn ≥ |µni |, we then have λn (B) > 0 and λn (A\B) > 0, as desired. Since each
λn is non-atomic, λ as well is non-atomic. For, suppose λ (A) > 0. There is
some λn such that λn (A) > 0. Hence, there is B ⊆ A such that λn (B) > 0
and λn (A\B) > 0. Since λ ≥ λn, we then have λ (B) > 0 and λ (A\B) > 0,
and so λ is non-atomic. By Lemma 13, ν ≡ λ. As λ is non-atomic, this
implies that ν as well is non-atomic, as desired. ¥

3 Choquet Integrals
Given a game ν : Σ → R and a real-valued function f : Ω → R, a natural
question is whether there is a meaningful way to write an integral

R
fdν that

extends the standard notions of integrals for additive games.
Fortunately, Choquet [11, p. 265] has shown that it is possible to develop

a rich theory of integration in a non-additive setting. As usual with notions
of integration, we will present Choquet�s integral in a few steps, beginning
with positive functions.

3.1 Positive Functions

A function f : Ω→ R is Σ-measurable if f−1 (I) ∈ Σ for each open and each
closed interval I of R (see [20, p. 240]). The set of all bounded Σ-measurable
f : Ω→ R is denoted by B (Σ).
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Proposition 15 The set B (Σ) is a lattice. If, in addition, Σ is a σ-algebra,
then B (Σ) is a vector lattice.

Proof. Let f, g ∈ B (Σ). We only prove that (f ∨ g)−1 (a, b) ∈ Σ for any
open (possibly unbounded) interval (a, b) ⊆ R, the other cases being similar.
For each t ∈ R, the following holds:

(f ∨ g > t) = (f > t) ∪ (g > t)
(f ∨ g < t) = (f < t) ∩ (g < t) .

Hence,

(f ∨ g)−1 (a, b) = (f ∨ g > a) ∩ (f ∨ g < b)
= ((f > a) ∪ (g > a)) ∩ ((f < b) ∩ (g < b)) ∈ Σ,

as desired. Finally, the fact that B (Σ) is a vector space when Σ is a σ-algebra
is a standard result in measure theory (see [1, Thm 4.26]). ¥

Given a capacity ν : Σ → R and a positive Σ-measurable function f :
Ω→ R, the Choquet integral of f with respect to ν is given by:Z

fdν =

Z ∞

0

ν ({ω ∈ Ω : f (ω) ≥ t}) dt, (11)

where on the right we have a Riemann integral. To see why the Riemann
integral is well deÞned, Þrst observe that

f−1 ([t,+∞)) = {ω ∈ Ω : f (ω) ≥ t} ∈ Σ for each t ∈ R.

Set Et = {ω ∈ Ω : f (ω) ≥ t}; the survival function Gν : R → R of f with
respect to ν is deÞned by Gν (t) = ν (Et) for each t ∈ R. Using this function,
we can write (11) as

R
fdν =

R∞
0
Gν (t) dt. The family {Et}t∈R is a chain,

withEt ⊇ Et0 if t ≤ t0.5 Since ν is a capacity, we have ν (Et) ≥ ν (Et0) if t ≤ t0,
and so Gν is a decreasing function. Moreover, since f is both positive and
bounded, the function Gν is positive, decreasing and with compact support.
By standard results on Riemann integration, we conclude that the Riemann
integral

R +∞
0

Gν (t) dt exists, and so the Choquet integral (11) is well deÞned.

5A collection C in Σ is chain if for each A and B in C it holds either A ⊆ B or B ⊆ A.
Throughout we assume that ∅,Ω ∈ C.
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The Choquet integral
R
fdν reduces to the standard additive integral

when ν is additive. Given a positive charge µ and a function f in B (Σ), leteR fdµ be the standard additive integral for charges (see, e.g., [1, p. 399] and
[5, pp. 115-121]).

Proposition 16 Given a positive function f ∈ B (Σ) and a positive charge
µ ∈ ba (Σ), it holds

fZ
fdµ =

Z
µ (f ≥ t) dt =

Z
fdµ.

Proof. We use an argument of [53, p. 172]. Set Et = (f ≥ t). Given ω ∈ Ω,
we have Z ∞

0

1Et (ω) dt =

Z ∞

0

1[0,f(ω)] (t) dt =

Z f(ω)

0

dt = f (ω) .

Equivalently, f (ω) =
R∞
0
1Et (ω) dλ, where λ is the Lebesgue measure on R.

By the Fubini Theorem for the integral eR (see, e.g., [41]), we can write
fZ
fdµ =

fZ
Ω

µZ ∞

0

1Et (ω) dλ

¶
dµ =

Z ∞

0

ÃfZ
Ω

1Et (ω) dµ

!
dλ

=

Z ∞

0

µ (f ≥ t) dλ =
Z ∞

0

µ (f ≥ t) dt,

as desired. ¥

We close by observing that in deÞning Choquet integrals we could have
equivalently used the �strict� upper sets (f > t).

Proposition 17 Let ν be a capacity and f a positive function in B (Σ).
Then, Z ∞

0

ν (f ≥ t) dt =
Z ∞

0

ν (f > t) dt.

Proof. As before, set Gν (t) = ν (f ≥ t) for each t ∈ R. Moreover, set
G0ν (t) = ν (f > t) for each t ∈ R. We have (f ≥ t+ 1/n) ⊆ (f > t) ⊆ (f ≥ t)
for each t ∈ R, and so Gν (t+ 1/n) ≤ G0ν (t) ≤ Gν (t) for each t ∈ R. If Gν
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is continuous at t, we have Gν (t) = limnGν (t+ 1/n) ≤ G0ν (t) ≤ Gν (t), so
that G0ν (t) = Gν (t).
On the other hand, as Gν is a decreasing function, it is continuous except

on an at most countable set T ⊆ R. As a result, it holds G0ν (t) = Gν (t)
for all t /∈ T , which in turn implies R∞

0
G0ν (t) dt =

R∞
0
Gν (t) dt by standard

results on Riemann integration. ¥

3.2 General Functions

We now extend the deÞnition of the Choquet integral to generalΣ-measurable
functions. In the previous subsection we have deÞned the Choquet integral
onB+ (Σ), the cone of all positive elements of B (Σ). Each capacity ν induces
a functional νc : B+ (Σ)→ R on this cone, given by νc (f) =

R
fdν for each

f ∈ B+ (Σ). If f is a characteristic function 1A, we get νc (1A) =
R
1Adν =

ν (A); thus, the functional νc � which we call the Choquet functional � can
be viewed as an extension of the capacity ν from Σ to B+ (Σ).
Our problem of deÞning a Choquet integral on B (Σ) can be viewed as

the problem of how to extend the Choquet functional on the entire space
B (Σ). In principle, there are many different ways to extend it. To make the
extension problem meaningful we have to set a desideratum for the extension,
that is, a property we want it to satisfy.
A natural property to require is that the extended functional νc : B (Σ)→

R be translation invariant, that is, νc (f + α1Ω) = νc (f) + ανc (1Ω) for each
α ∈ R and each f ∈ B (Σ). The next result shows that this desideratum pins
down the extension to a particular form.

Proposition 18 A Choquet functional νc : B+ (Σ)→ R induced by a capac-
ity admits a unique translation invariant extension, given byZ ∞

0

ν (f ≥ t) dt+
Z 0

−∞
[ν (f ≥ t)− ν (Ω)] dt (12)

for each f ∈ B (Σ), where on the right we have two Riemann integrals.

Proof. Set

bνc (f) = Z ∞

0

ν (f ≥ t) dt+
Z 0

−∞
[ν (f ≥ t)− ν (Ω)] dt.
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The functional bνc is well deÞned and some simple algebra shows that it
is translation invariant and that it reduces to the Choquet integral when
f ∈ B+ (Σ). Assume eν : B (Σ) → R is a translation invariant functional
such that eν (f) = νc (f) whenever f ∈ B+ (Σ). We want to show that eν
satisÞes (12), so that eν = bνc.
Let f ∈ B (Σ) be such that inf f = γ < 0. By translation invariance,eν (f − γ) = eν (f)− γeν (1Ω). As f − γ belongs to B+ (Σ), we can then write:

eν (f) = eν (f − γ) + γeν (1Ω)
= νc (f − γ) + γνc (1Ω)
=

Z ∞

0

ν ((f − γ) ≥ t) dt+ γνc (1Ω)

=

Z ∞

0

ν (f ≥ t+ γ) dt+ γνc (1Ω)

=

Z ∞

γ

ν (f ≥ τ ) dτ + γνc (1Ω)

=

Z 0

γ

ν (f ≥ τ) dτ +
Z ∞

0

ν (f ≥ τ) dτ −
Z 0

γ

ν (Ω) dτ

where the penultimate equality is due to the change of variable τ = t+ γ.
As [ν (f ≥ τ)− ν (Ω)] = 0 for all τ ≤ γ, the following holds:

eν (f) = Z ∞

0

ν (f ≥ τ) dτ +
Z 0

−∞
(ν (f ≥ τ)− ν (Ω)) dτ .

Hence, eν = bνc, as desired. ¥
Before moving on, observe that the Riemann integrals in (12) exist even

if ν is a game of bounded variation, that is, if ν ∈ bv (Σ). In fact, for each
such game there exist two capacities ν1 and ν2 with ν = ν1 − ν2. Hence,
ν (f ≥ t) = ν1 (f ≥ t) − ν2 (f ≥ t) for each t ∈ R, and so ν (f ≥ t) is a
function of bounded variation in t. The Riemann integrals in (12) then exist
by standard results on Riemann integrals.
In view of Proposition 18 and the above observation, next we deÞne the

Choquet integral for functions in B (Σ) with respect to games in bv (Σ) as
the translation invariant extension of the deÞnition given in (11) for positive
functions.
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DeÞnition 19 Given a game ν ∈ bv (Σ) and a function f ∈ B (Σ), the
Choquet integral

R
fdν is deÞned byZ

fdν =

Z ∞

0

ν (f ≥ t) dt+
Z 0

−∞
[ν (f ≥ t)− ν (Ω)] dt. (13)

The associated Choquet functional νc : B (Σ)→ R is given by νc (f) =
R
fdν

for each f ∈ B (Σ).
Translation invariance and Proposition 16 imply that when ν is a bounded

charge, the Choquet integral
R
fdν of a f ∈ B (Σ) reduces to the standard

additive integral. Moreover, it is easy to check that Proposition 17 holds for
general Choquet integrals, that is,Z

fdν =

Z ∞

0

ν (f > t) dt+

Z 0

−∞
[ν (f > t)− ν (Ω)] dt.

Finally, the Choquet integral (13) is well deÞned for all Þnite games since
they belong to bv (Σ). As in the Þnite case B (Σ) = RΩ, this means that
Þnite games induce Choquet functionals νc : RΩ → R.

Example 20 Given a nonempty coalition A, the unanimity game uA : Σ→
R is the two-valued convex game deÞned by

uA (B) =

½
1 A ⊆ B
0 else

for all B ∈ Σ. For each f ∈ B (Σ) it holds
R
fduA = infω∈A f (ω). In

fact, we have A ⊆ (f ≥ t) if and only if t ≤ infω∈A f (ω), and so GuA (t) =
1(−∞,infω∈A f(ω)] (t). N

Example 21 Let Ω = {ω1,ω2} and suppose ν is a capacity on 2Ω with
0 < ν (ω1) < 1, 0 < ν (ω2) < 1, and ν (Ω) = 1. Then, νc : R2 → R is given
by

νc (x1, x2) =

½
x1 (1− ν (ω2)) + x2ν (ω2) if x2 ≥ x1,
x1ν (ω1) + x2 (1− ν (ω1)) if x2 < x1

Given any k ∈ R, the level curve {(x1, x2) ∈ R2 : νc (x1, x2) = k} is(
x2 =

k
ν(ω2)

− 1−ν(ω2)
ν(ω2)

x1 if x2 ≥ x1,
x2 =

k
1−ν(ω1) −

ν(ω1)
1−ν(ω1)x1 if x2 < x1
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As a result, the level curve is a straight line when ν is a charge � i.e., when
ν (ω1) + ν (ω2) = 1 � and it has, in contrast, a kink at the 45 degree line
{(x1, x2) ∈ R2 : x1 = x2} when ν is not a charge. The non additivity of ν is
thus reßected by kinks in the level curves. In general, level curves of Choquet
integrals are not affine spaces, unless the game is a charge. N

A function f in B (Σ) is simple if it is Þnite-valued, that is, if the set
{f (ω) : ω ∈ Ω} is Þnite. Each simple function f admits a unique represen-
tation f =

Pk
i=1 αi1Ai , where {Ai}ki=1 ⊆ Σ is a suitable partition of Ω and

α1 > · · · > αk. Using this representation, we can rewrite formula (13) in
a couple of equivalent ways, which are sometimes useful (see, for example,
the discussion of the Choquet Expected Utility model of Schmeidler [58] in
chapter 1).

Proposition 22 Given a game ν ∈ bv (Σ) and a simple function f ∈ B (Σ),
it holdsZ
fdν =

kX
i=1

(αi − αi+1) ν
Ã

i[
j=1

Aj

!
=

kX
i=1

αi

Ã
ν

Ã
i[
j=0

Aj

!
− ν

Ã
i−1[
j=0

Aj

!!
,

where we set αk+1 = 0 and A0 = ∅.

Proof. It is enough to prove the Þrst equality, the other being a simple
rearrangement of its terms. Let f be positive, so that αk ≥ 0. If t > α1,
then {ω ∈ Ω : f (ω) ≥ t} = ∅. If t ∈ (αi+1,αi], then (recall that αk+1 = 0):

{ω ∈ Ω : f (ω) ≥ t} =
i[
j=1

Aj .

Hence,

ν (f ≥ t) =
kX
i=1

ν

Ã
i[
j=1

Aj

!
1(αi+1,αi] (t) for each t ∈ R+,

so thatZ
fdν =

Z ∞

0

ν (f ≥ t) dt =
Z ∞

0

kX
i=1

ν

Ã
i[
j=1

Aj

!
1(αi+1,αi] (t) dt

=
kX
i=1

ν

Ã
i[
j=1

Aj

!Z ∞

0

1(αi+1,αi] (t) dt =
kX
i=1

(αi − αi+1) ν
Ã

i[
j=1

Aj

!
,
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as desired. This proves the Þrst equality for a positive f . The case of a
general f is easily obtained using translation invariance. ¥

When ν ∈ ba (Σ), the above formulae reduce toZ
fdν =

kX
i=1

αiν (Ai) ,

which is the standard integral of f with respect to the charge ν.

Example 23 Let P : Σ→ [0, 1] be a probability charge with range R (P ) =
{P (A) : A ∈ Σ}. Given a real-valued function g : R (P ) → R, the game
ν = f (P ) is called a scalar measure game. It holdsZ

fdν =

Z ∞

0

g (P (f ≥ t)) dt+
Z 0

−∞
[g (P (f ≥ t))− g (1)] dt.

The right hand side becomes

kX
i=1

αi

"
g

Ã
P

Ã
i[
j=0

Aj

!!
− g

Ã
P

Ã
i−1[
j=0

Aj

!!#

when f is a simple function. This is a familiar formula in Rank Dependent
Expected Utility (see chapters 1 and 2). N

3.3 Basic Properties

We begin by collecting a few basic properties of Choquet integrals. Here, k·k
on bv (Σ) is the variation norm given by (3), while ≥ and k·k on B (Σ) are
the pointwise order and the supnorm, respectively.6

Proposition 24 Suppose νc : B (Σ)→ R is the Choquet functional induced
by a game ν ∈ bv (Σ). Then:

(i) (Positive homogeneity): νc (αf) = ανc (f) for each α ≥ 0.
(ii) (Translation invariance): νc (f + α1Ω) = νc (f) + ανc (1Ω) for each

α ∈ R.
6That is, f ≥ g if f (ω) ≥ g (ω) for each ω ∈ Ω, and kfk = supω∈Ω |f (ω)|.
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(iii) (Monotonicity): νc (f) ≥ νc (g) if f ≥ g, provided ν is a capacity.
(iv) (Lipschitz continuity): for all f, g ∈ B (Σ),

|νc (f)− νc (g)| ≤ kνk kf − gk . (14)

Proof. Properties (i) and (ii) are easily established. To see that (iii) holds
it is enough to observe that, being ν a capacity, it holds ν (g ≥ t) ≤ ν (f ≥ t)
for each t ∈ R since f ≥ g implies (g ≥ t) ⊆ (f ≥ t) for each t ∈ R.
As to (iv), suppose Þrst that ν is a capacity. Assume νc (f) ≥ νc (g)

(the other case is similar). As f ≤ g + kf − gk, by (ii) and (iii) we have
νc (f) ≤ νc (g) + kf − gk ν (Ω). This implies

|νc (f)− νc (g)| ≤ ν (Ω) kf − gk , (15)

which is (14) when ν is monotonic. For, in this case kνk = ν (Ω).
Now, let ν ∈ bv (Σ). By [2, p. 28], ν can be written as ν = ν+ − ν−,

where ν+ and ν− are capacities such that kνk = ν+ (Ω) + ν− (Ω). By (15),
we then have:

|νc (f)− νc (g)| ≤
£
ν+ (Ω) + ν− (Ω)

¤ kf − gk ,
as desired. ¥

If a game ν belongs to bv (Σ), its dual ν as well belongs to bv (Σ). The
Choquet functional νc is therefore well deÞned and next we show that it can
be viewed as the dual functional of νc.

Proposition 25 Let ν ∈ bv (Σ). Then,

νc (f) = −νc (−f)

for each f ∈ B (Σ). If, in addition, ν is balanced, then

νc (f) ≤ µ (f) ≤ νc (f)

for each f ∈ B (Σ) and each µ ∈ core (ν).
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Proof. Given f ∈ B (Σ), we have:

νc (f) =

Z ∞

0

ν (f ≥ t) dt+
Z 0

−∞
[ν (f ≥ t)− ν (Ω)] dt

=

Z ∞

0

[ν (Ω)− ν (f < t)] dt+
Z 0

−∞
−ν (f < t) dt

=

Z ∞

0

[ν (Ω)− ν (f ≤ t)] dt−
Z 0

−∞
ν (f ≤ t) dt

=

Z ∞

0

[ν (Ω)− ν (−f ≥ −t)] dt−
Z 0

−∞
ν (−f ≥ −t) dt

=

Z 0

−∞
[ν (Ω)− ν (−f ≥ t)] dt−

Z ∞

0

ν (−f ≥ t) dt

= −
µZ 0

−∞
[ν (−f ≥ t)− ν (Ω)] dt+

Z ∞

0

ν (−f ≥ t) dt
¶

= −νc (−f) .

Suppose ν is balanced. Then ν (A) ≤ µ (A) ≤ ν (A) for each A ∈ Σ and each
µ ∈ core (ν). In turn this implies that, given any f ∈ B (Σ), ν (f ≥ t) ≤
µ (f ≥ t) ≤ ν (f ≥ t) for each t ∈ R. By the monotonicity of the Riemann
integral, Z ∞

0

ν (f ≥ t) dt+
Z 0

−∞
[ν (f ≥ t)− ν (Ω)] dt

≥
Z ∞

0

µ (f ≥ t) dt+
Z 0

−∞
[µ (f ≥ t)− ν (Ω)] dt

≥
Z ∞

0

ν (f ≥ t) dt+
Z 0

−∞
[ν (f ≥ t)− ν (Ω)] dt,

and so νc (f) ≤ µ (f) ≤ νc (f), as desired. ¥

In general, Choquet functionals ν : B (Σ)→ R are not additive, that is, it
is in general false that νc (f + g) = νc (f) + νc (g). However, the next result,
due to Dellacherie [13], shows that additivity holds in a restricted sense.
Say that two functions f, g ∈ B (Σ) are comonotonic (short for �commonly
monotonic�) if (f (ω)− f (ω0)) (g (ω)− g (ω0)) ≥ 0 for any pair ω,ω0 ∈ Ω.
That is, two functions are comonotonic provided they have a similar pattern.
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Theorem 26 Suppose ν : B (Σ) → R is the Choquet functional induced by
a game ν ∈ bv (Σ). Then, νc (f + g) = νc (f) + νc (g) provided f and g are
comonotonic, and f + g ∈ B (Σ).

To prove this result we need couple of useful lemmas. The Þrst one says
that two functions f and g are comonotonic if and only if all their upper
sets are nested. This is trivially true for the two collections (f ≥ t) and
(g ≥ t) separately; the interesting part here is that f and g are comonotonic
if and only if this is still the case for the combined collection {(f ≥ t)}t∈R ∪
{(g ≥ t)}t∈R. For a proof of this lemma we refer to [17, Prop. 4.5].

Lemma 27 Two functions f, g ∈ B (Σ) are comonotonic if and only if the
overall collection of all upper sets (f ≥ t) and (g ≥ t) is a chain.

The next lemma says that we can replicate games over chains with suitable
charges. The non-additivity of a game is, therefore, immaterial as long as we
restrict ourselves to chains.

Lemma 28 Let ν ∈ bv (Σ). Given any chain C in Σ there is µ ∈ ba (Σ) such
that

µ (A) = ν (A) for all A ∈ C. (16)

If, in addition, ν is a capacity, then we can take µ ∈ ba+ (Σ).

Proof. It is enough to prove the result for a capacity ν, as the extension to
any game in bv (Σ) is routine in view of their decomposition as differences of
capacities given in Proposition 1.
Consider Þrst a Þnite chain ∅ = A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ An+1 = Ω. Let

Σ0 be the Þnite subalgebra of Σ generated by such chain. Let µ0 ∈ ba+ (Σ0)
be deÞned by

µ0 (Ai+1\Ai) = ν (Ai+1)− ν (Ai) for i = 1, ..., n.

By standard extension theorems for positive charges (see, e.g., [5, Corollary
3.3.4]), there exists µ ∈ ba+ (Σ) which extends µ0 on Σ, i.e., µ (A) = µ0 (A)
for each A ∈ Σ0. Hence, µ is the desired charge.
Now, let C be any chain. Let {Cα}α be the collection of all its Þnite

subchains, and set Γα = {µ ∈ ba+ (Σ) : µ (A) = ν (A) for each A ∈ Cα}. By
what we just proved, each Γα is nonempty. Moreover, the collection {Γα}α
has the Þnite intersection property. For, let {Ci}ni=1 ⊆ {Cα}α be a Þnite
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collection. Since
Sn
i=1 Ci is in turn a Þnite chain, by proceeding as before it

is easy to establish the existence of a µ ∈ ba (Σ) such that µ (A) = ν (A) for
each A ∈ Sn

i=1 Ci. As µ ∈
Tn
i=1 Γi, the intersection

Tn
i=1 Γi is nonempty, as

desired.
Each Γα is a weak∗-closed subset of the weak∗-compact set©

µ ∈ ba+ (Σ) : µ (Ω) = ν (Ω)ª .
Since {Γα}α has the Þnite intersection property, we conclude that

T
α Γα 6= ∅.

Any charge µ ∈ Tα Γα satisÞes (16). ¥

Proof of Theorem 26. Suppose f and g are comonotonic functions in
B (Σ). Then, the sum f + g is comonotonic with both f and g, so that the
collection {f, g, f + g} consists of pairwise comonotonic functions. Let

C = {(f ≥ t)}t∈R ∪ {(g ≥ t)}t∈R ∪ {(f + g ≥ t)}t∈R .
By Lemma 27, C is a chain. By Lemma 28, there is µ ∈ ba (Σ) such that
µ (A) = ν (A) for all A ∈ C. Hence,Z

fdν +

Z
gdν =

Z
fdµ+

Z
gdµ

=

Z
(f + g) dµ =

Z
(f + g) dν,

as desired. ¥

As constant functions are comonotonic with all other functions, comonotonic
additivity is a much stronger property than translation invariance. The next
result of Bassanezi and Greco [3, Thm 2.1] shows that comonotonic additivity
is actually the �best� possible type of additivity for Choquet functionals.

Proposition 29 Suppose Σ contains all singletons. Then, two functions
f, g ∈ B (Σ), with f + g ∈ B (Σ), are comonotonic if and only if it holds
νc (f + g) = νc (f) + νc (g) for all Choquet functionals induced by convex
capacities ν : Σ→ R.

Proof. The �only if� part holds by Theorem 26. As to �if� part, assume it
holds

νc (f + g) = νc (f) + νc (g) (17)

27



for all Choquet functionals induced by convex capacities. Suppose, per con-
tra, that f and g are not comonotonic. Then, there exist ω0,ω00 ∈ Ω such
that [f (ω0)− f (ω00)] [g (ω0)− g (ω00)] < 0. Say that f (ω0) < f (ω00) and
g (ω0) > g (ω00), and consider the convex game

u{ω0,ω00} (A) =
½
1 if {ω0,ω00} ⊆ A
0 else

.

By Example 20, u{ω0,ω00},c (f) = f (ω0) and u{ω0,ω00},c (g) = g (ω00). Hence,

u{ω0,ω00},c (f + g) = min {(f + g) (ω0) , (f + g) (ω00)}
6= f (ω0) + g (ω00) = u{ω0,ω00},c (f) + u{ω0,ω00},c (g) ,

which contradicts (17). ¥

Notice that the argument used to prove the last result can be adapted to
give the following characterization of comonotonicity: when Σ contains all
singletons, two functions f, g ∈ B (Σ) are comonotonic if and only if

inf
ω∈A

(f (ω) + g (ω)) = inf
ω∈A

f (ω) + inf
ω∈A

g (ω)

for all A ∈ Σ.

Lemmas 27 and 28 are especially useful in Þnding counterparts for games
and for their Choquet integrals of standard results that hold in the additive
case. Theorem 26 is a Þrst important example since through these lemmas
we could derive the counterpart for Choquet integrals of the additivity of
standard integrals. We close this subsection with another simple illustra-
tion of this feature of Lemmas 27 and 28 by showing a version for Choquet
integrals of the classic Jensen inequality.

Proposition 30 Let ν be a capacity with ν (Ω) = 1. Given a monotone
convex function φ : R→ R, for each f ∈ B (Σ) the following holds:Z

φ (f) dν ≥ φ
µZ

fdν

¶
.
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Proof. Given any f ∈ B (Σ), the functions φ ◦ f and f are comonotonic. By
Lemmas 27 and 28, there is µ ∈ ba+ (Σ) such that µ (f ≥ t) = ν (f ≥ t) and
µ (φ (f) ≥ t) = ν (φ (f) ≥ t) for each t ∈ R. In turn, this implies µ (Ω) =
ν (Ω) = 1,

R
φ (f) dν =

R
φ (f) dµ, and

R
fdν =

R
fdµ. By the standard

Jensen inequality:Z
φ (f) dν =

Z
φ (f) dµ ≥ φ

µZ
fdµ

¶
= φ

µZ
fdν

¶
,

as desired. ¥

4 Representation
Summing up, Choquet functionals are positively homogeneous, comonotonic
additive, and Lipschitz continuous; they are also monotone provided the
underlying game does.
A natural question is whether these properties actually characterize Cho-

quet functionals among all the functionals deÞned on B (Σ). Schmeidler [56]
showed that this the case and we now present his result.

Theorem 31 Let eν : B (Σ) → R be a functional. DeÞne the game ν (A) =eν (1A) on Σ. The following conditions are equivalent:
(i) eν is monotone and comonotonic additive;
(ii) ν is a capacity and, for all f ∈ B (Σ), it holds:

eν (f) = Z ∞

0

ν (f ≥ t) dt+
Z 0

−∞
[ν (f ≥ t)− ν (Ω)] dt. (18)

Remarks. (i) Positive homogeneity is a redundant condition here as it is
implied by comonotonic additivity and monotonicity, as shown in the proof.
(ii) Zhou [71] proved a version of this result on Stone lattices.

Proof. (ii) trivially implies (i). Conversely, assume (i). We divide the proof
into three steps.
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Step 1. For any f ∈ B (Σ) and any integer n, by comonotonic additivity we
have eν (f) = eν ¡n f

n

¢
= neν ¡f

n

¢
. Namely, eν ¡ f

n

¢
= 1

n
eν (f). Hence, given any

positive rational number α = m/n,

eν ³m
n
f
´
= eν µf

n
+ · · ·+ f

n

¶
= eν µf

n

¶
+ · · ·+ eν µf

n

¶
=
m

n
eν (f) .

As a result, we have eν (λf) = λeν (f) for any λ ∈ Q+. In particular, this
implies 0 = eν (λ1Ω − λ1Ω) = λν (Ω) + eν (−λ1Ω) for each λ ∈ Q+, and soeν (f + λ1Ω) = eν (f) + eν (λ1Ω) = eν (f) + λν (Ω) for each f ∈ B (Σ) and each
λ ∈ Q.
Step 2. We now prove that eν is supnorm continuous. Let f, g ∈ B (Σ)
and let {rn}n be a sequence of rationals such that rn ↓ kf − gk. As f ≤
g + kf − gk ≤ g + rn, it follows that eν (f) ≤ eν (g) + rnν (Ω). Consequently,
|eν (f)− eν (g)| ≤ rnν (Ω). As n→∞, we get |eν (f)− eν (g)| ≤ kf − gk ν (Ω).
Hence, eν is Lipschitz continuous, and so supnorm continuous.
In turn, this implies eν (λf) = λeν (f) for all λ ≥ 0 and eν (f + λ1Ω) =eν (f) + λν (Ω) for each f ∈ B (Σ) and each λ ∈ R, i.e., eν is translation

invariant.

Step 3. It remains to show that (18) holds, i.e., that eν (f) = νc (f) for
all f ∈ B (Σ). Since both eν and νc are supnorm continuous and B0 (Σ) is
supnorm dense in B (Σ), it is enough to show that eν (f) = νc (f) for all
f ∈ B0 (Σ).
Let f ∈ B0 (Σ). Since both eν and νc are translation invariant, it is

enough to show that eν (f) = νc (f) for f ≥ 0. As f ∈ B0 (Σ), we can
write f =

Pk
i=1 αi1Ai , where {Ai}ki=1 ⊆ Σ is a suitable partition of Ω and

α1 > · · · > αk. Setting Di =
Si
j=1Aj and αk+1 = 0, we can then write

f =
Pk−1

i=1 (αi − αi+1) 1Di + αk1Ω. As the functions {(αi − αi+1) 1Di}k−1i=1 and
αk1Ω are pairwise comonotonic, by the comonotonic additivity and positive
homogeneity of eν we have

eν (f) = k−1X
i=1

(αi − αi+1) ν
Ã

i[
j=1

Aj

!
+ αk1Ω.

Since
Pk

i=1 (αi − αi+1) ν
³Si

j=1Aj

´
=
R∞
0
ν (f ≥ t) dt, we conclude that eν (f) =R∞

0
ν (f ≥ t) dt, i.e., eν (f) = νc (f), as desired. ¥
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Next we extend Schmeidler�s Theorem to the non-monotonic case. Given
a functional eν : B (Σ)→ R and any two f, g ∈ B (Σ) with f ≤ g, set

V (f ; g) = sup
n−1X
i=0

|eν (fi+1)− eν (fi)| ,
where the supremum is taken over all Þnite chains f = f0 ≤ f1 ≤ ··· ≤ fn = g.
We say that eν is of bounded variation if V (0; f) < +∞ for all f ∈ B+ (Σ).
Theorem 32 Let eν : B (Σ) → R be a functional. DeÞne the game ν (A) =eν (1A) on Σ. The following conditions are equivalent:
(i) eν is comonotonic additive and of bounded variation;
(ii) eν is comonotonic additive and supnorm continuous on B+ (Σ), and

ν ∈ bv (Σ);
(iii) ν ∈ bv (Σ) and, for all f ∈ B (Σ),

eν (f) = Z ∞

0

ν (f ≥ t) dt+
Z 0

−∞
[ν (f ≥ t)− ν (Ω)] dt.

Remark. When Σ is Þnite, the requirement ν ∈ bv (Σ) becomes superßuous
in conditions (ii) and (iii) as all Þnite games are of bounded variation.

Before proving the result, we give a useful lemma. Observe that the
decomposition f = (f − t)+ + (f ∧ t) reduces to the standard f = f+ − f−
when t = 0.

Lemma 33 Let eν : B (Σ)→ R be a comonotonic additive functional. Then,

eν (f) = eν ¡(f − t)+¢+ eν (f ∧ t) for each t ∈ R and f ∈ B (Σ) .

Proof. Given any t ∈ R, the functions (f − t)+ and f ∧ t are comonotonic.
In fact, for any ω,ω0 ∈ Ω we have:£

(f − t)+ (ω)− (f − t)+ (ω0)¤ [(f ∧ t) (ω)− (f ∧ t) (ω0)]
= (f − t)+ (ω) (f ∧ t) (ω)− (f − t)+ (ω) (f ∧ t) (ω0)

− (f − t)+ (ω0) (f ∧ t) (ω) + (f − t)+ (ω0) (f ∧ t) (ω0)
= (f − t)+ (ω) (f − t)− (ω0) + (f − t)+ (ω0) (f − t)− (ω) ≥ 0,

31



as desired. ¥

Proof of Theorem 32. (i) implies (ii). Clearly, ν ∈ bv (Σ). We want to
show that (i) implies that eν is supnorm continuous over B+ (Σ). As Step 1 of
the proof of Theorem 31 still holds here, we have eν (f + λ1Ω) = eν (f)+λν (Ω)
for each f ∈ B (Σ) and each λ ∈ Q. That is, eν is translation invariant w.r.t.
Q.
Let f, g ∈ B (Σ) with f ≤ g. If f ≥ 0, then V (f ; g) ≤ V (0; g) < +∞.

Suppose f is not necessarily positive. There exists λ ∈ Q+ such that f+λ ≥ 0
and g+λ ≥ 0. By the translation invariance w.r.t. Q of eν, we have V (f ; g) =
V (f + λ; g + λ) for all λ ∈ Q. Hence, V (f ; g) = V (f + λ; g + λ) < +∞.
It is easy to see that V (0;λf) = λV (0; f) for all λ ∈ Q+. The next claim

gives a deeper property of V (f ; g).

Claim. For all f ≥ 0 and all λ ∈ Q+, it holds

V (−λ; f) = V (−λ; 0) + V (0; f) .

Proof of the Claim. If f ≤ h ≤ g, we have V (f ; g) ≥ V (f ;h) + V (h; g).
Hence, it suffices to show that V (−λ; f) ≤ V (−λ; 0) + V (0; f).
By deÞnition, for any ε > 0 there exists a chain {ϕi}ni=0 such that

n−1X
i=0

¯̄eν ¡ϕi+1¢− eν (ϕi)¯̄ ≥ V (−λ; f)− ε,
with ϕ0 = −λ and ϕn = f . For each ϕi, consider the two functions ϕ

−
i =

− (ϕi ∧ 0) and ϕ+i = ϕi ∨ 0 and the two chains
©−ϕ−i ª and ©ϕ+i ª. The

former chain is relative to V (−λ; 0), while the latter is relative to V (0; f).
Therefore, we have

V (−λ; 0) + V (0; f) (19)

≥
n−1X
i=0

¯̄eν ¡−ϕ−i+1¢− eν ¡−ϕ−i ¢¯̄+ n−1X
i=0

¯̄eν ¡ϕ+i+1¢− eν ¡ϕ+i ¢¯̄
=

n−1X
i=0

¡¯̄eν ¡−ϕ−i+1¢− eν ¡−ϕ−i ¢¯̄+ ¯̄eν ¡ϕ+i+1¢− eν ¡ϕ+i ¢¯̄¢ .
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On the other hand, by Lemma 33 for each i we have eν (ϕi) = eν ¡ϕ+i ¢ +eν ¡−ϕ−i ¢, and so:¯̄eν ¡ϕi+1¢− eν (ϕi)¯̄ =
¯̄eν ¡ϕ+i+1¢+ eν ¡−ϕ−i+1¢− eν ¡ϕ+i ¢− eν ¡−ϕ−i ¢¯̄

≤ ¯̄eν ¡ϕ+i+1¢− eν ¡ϕ+i ¢¯̄+ ¯̄eν ¡−ϕ−i+1¢− eν ¡−ϕ−i ¢¯̄ .
In view of (19), we can write

V (−λ; 0) + V (0; f) ≥
n−1X
i=0

¯̄eν ¡ϕi+1¢− eν (ϕi)¯̄ ≥ V (−λ; f)− ε,
which proves our claim.

DeÞne the monotone functional eν1 (f) = V (0; f) on B+ (Σ). For each
λ ∈ Q+ we have

eν1 (f + λ) = V (0; f + λ) = V (−λ; f) = V (−λ; 0) + V (0; f)
= V (0;λ) + V (0; f) = λV (0; 1) + V (0; f) = λeν1 (1Ω) + eν1 (f) .

Hence, eν1 is translation invariant w.r.t. Q+. Since eν1 is monotone, by Step
2 of the proof of Theorem 31 it is Lipschitz continuous, and so supnorm
continuous.
Consider the functional eν2 = eν1 − eν on B+ (Σ). The functional eν2 is

monotone; moreover, it is translation invariant w.r.t. Q as both eν1 and eν
do. Consequently, by Step 2 of the proof of Theorem 31 eν2 is supnorm
continuous. As eν = eν1 − eν2, we conclude that also eν is supnorm continuous,
thus completing the proof that (i) implies (ii).

(ii) implies (iii). Step 1 of the proof of Theorem 31 holds here as well.
Hence, eν (λf) = λeν (f) for all λ ∈ Q+, and eν (f + λ1Ω) = eν (f) + λν (Ω) for
each f ∈ B (Σ) and each λ ∈ Q. By supnorm continuity, eν (λf) = λeν (f) for
all λ ≥ 0, and eν (f + λ1Ω) = eν (f) + λν (Ω) for each λ ∈ R. The functionaleν is, therefore, positively homogeneous and translation invariant.
Let νc be the Choquet functional associated with ν. As ν ∈ bv (Σ), νc is

well deÞned and supnorm continuous. We want to show that eν = νc. Since
both eν and νc are supnorm continuous and B0 (Σ) is supnorm dense in B (Σ),
it is enough to show that eν (f) = νc (f) for each f ∈ B0 (Σ). This can be
established by proceeding as in Step 3 of the proof of Theorem 31.
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(iii) implies (i). It remains to show that the Choquet functional νc is
of bounded variation as long as ν ∈ bv (Σ). By Proposition 1, there exist
capacities ν1 and ν2 such that ν = ν1 − ν2. Hence, νc = ν1c − ν2c and so the
functional νc is the difference of two monotone functionals. This implies

V (f ; g) ≤ ν1c (g)− ν1c (f) + ν2c (g)− ν2c (f) ,
and we conclude that νc is of bounded variation. ¥

5 Convex Games
Convex games are an interesting class of games and played an important role
in Schmeidler�s approach to ambiguity, as explained in chapter 1. Here we
show some of their remarkable mathematical properties.
We begin by proving formally that convexity can be formulated as in Eq.

(1), a version useful in game theory for interpreting supermodularity in terms
of marginal values (see [44]).

Proposition 34 For any game ν, the following properties are equivalent:

(i) ν is convex;

(ii) for all sets A, B, and C such that A ⊆ B and B ∩ C = ∅,
ν (A ∪ C)− ν (A) ≤ ν (B ∪ C)− ν (B) ;

(iii) for all disjoint sets A, B, and C:

ν (B ∪A)− ν (B) ≤ ν (B ∪ C ∪ A)− ν (B ∪ C) .

Proof. (ii) easily implies (iii). Assume (ii) holds. Since (A ∪B) \A =
B\ (A ∩B), to check the supermodularity of ν is enough to setC = (A ∪B) \A.
Finally, assume (i) holds. If the sets A, B, and C are disjoint, then (B ∪ C)∩
(B ∪ A) = B, and so supermodularity implies (iii), as desired. ¥

The next result, due to Choquet [11, p. 289], shows that the convexity
of the game and the superlinearity of the associated Choquet functional are
two faces of the same coin.7 Recall that, by Proposition 15, B (Σ) is a lattice
and it becomes a vector lattice when Σ is σ-algebra.

7A functional is superlinear if it is positively homogeneous and superadditive. Recall
that, by Proposition 24, Choquet functionals are always positively homogeneous.
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Theorem 35 For any game ν in bv (Σ), the following conditions are equiv-
alent:

(i) ν is convex,

(ii) νc is superadditive on B (Σ), i.e., νc (f + g) ≥ νc (f) + νc (g) for all
f, g ∈ B (Σ) such that f + g ∈ B (Σ).

(iii) νc is supermodular on B (Σ), i.e., νc (f ∨ g)+νc (f ∧ g) ≥ νc (f)+νc (g)
for all f, g ∈ B (Σ).

Proof. We prove that both (ii) and (iii) are equivalent to (i).
(i) implies (ii). Given f ∈ B+ (Σ) and E ∈ Σ, we have:

(f + 1E ≥ t) = (f ≥ t) ∪ (E ∩ (f ≥ t− 1)) ,

and so f + 1E ∈ B+ (Σ). In turn, this implies f + g ∈ B+ (Σ) whenever
g ∈ B+ (Σ) is simple. Moreover, as ν is convex, we get

ν (f + 1E ≥ t) ≥ ν (f ≥ t) + ν (E ∩ (f ≥ t− 1))− ν (E ∩ (f ≥ t)) .

Consequently,

νc (f + 1E)

=

Z ∞

0

ν (f + 1E ≥ t) dt

≥
Z ∞

0

ν (f ≥ t) dt+
Z ∞

0

ν (E ∩ (f ≥ t− 1)) dt−
Z ∞

0

ν (E ∩ (f ≥ t)) dt

= νc (f) +

Z 0

−1
ν (E ∩ (f ≥ t)) dt = νc (f) + ν (E) .

As νc is positive homogeneous, for each λ ≥ 0 we have:

νc (f + λ1E) = λνc

µ
f

λ
+ 1E

¶
≥ λ

µ
νc

µ
f

λ

¶
+ ν (E)

¶
= νc (f) + λν (E) .

Let g ∈ B+ (Σ) be a simple function. We can write g = Pn
i=1 λi1Di, where

D1 ⊆ · · · ⊆ Dn and λi ≥ 0 for each i = 1, ..., n. As g is simple, we have
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f + g ∈ B+ (Σ). Hence,

νc (f + g) = νc

Ã
f +

nX
i=1

λi1Di

!
≥ νc

Ã
f +

nX
i=2

λi1Di

!
+ λ1ν (D1)

≥ · · ·
≥ νc (f) +

nX
i=1

λiν (Di) = νc (f) + νc (g) ,

as desired. To show that the inequality ν (f + g) ≥ ν (f)+ ν (g) holds for all
f, g ∈ B (Σ) it is now enough to use the translation invariance and supnorm
continuity of νc.

(ii) implies (i). Given any sets A and B, it holds

1A∪B + 1A∩B = 1A + 1B.

Since the characteristic functions 1A∪B and 1A∩B are comonotonic, we then
have:

ν (A ∪B) + ν (A ∩B) = νc (1A∪B) + νc (1A∩B) = νc (1A∪B + 1A∩B)
= νc (1A + 1B) ≥ νc (1A) + νc (1B) = ν (A) + ν (B) ,

and so the game ν is convex, as desired.

(i) implies (iii). As νc is translation invariant, it is enough to prove the
implication for f and g positive. It is easy to check that, for each t ∈ R, it
holds:

(f ∨ g ≥ t) = (f ≥ t) ∪ (g ≥ t)
(f ∧ g ≥ t) = (f ≥ t) ∩ (g ≥ t) .

Therefore, if ν is convex, then

ν (f ∨ g ≥ t) + ν (f ∧ g ≥ t) ≥ ν (f ≥ t) + ν (g ≥ t) .
Hence,

νc (f ∨ g) + νc (f ∧ g) =

Z ∞

0

ν (f ∨ g ≥ t) dt+
Z ∞

0

ν (f ∧ g ≥ t) dt

=

Z ∞

0

[ν (f ∨ g ≥ t) + ν (f ∧ g ≥ t)] dt

≥
Z ∞

0

[ν (f ≥ t) + ν (g ≥ t)] dt = νc (f) + νc (g) ,
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as desired.
(iii) implies (i). We have 1A ∨ 1B = 1A∪B and 1A ∧ 1B = 1A∩B. Hence,

if we put f = 1A and g = 1B in the inequality νc (f ∨ g) + νc (f ∧ g) ≥
νc (f) + νc (g), we get ν (A ∪B) + ν (A ∩B) ≥ ν (A) + ν (B), as desired. ¥

By Theorem 35, a game is convex if and only if the associated Choquet
functional νc is superlinear, that is, superadditive and positively homoge-
neous. This is a useful property that, for example, makes it possible to use
the classic Hahn-Banach Theorem in studying convex games.
In order to do so, however, we Þrst have to deal with a technical problem:

unless Σ is a σ-algebra, the space B (Σ) is not in general a vector space,
something needed to apply the Hahn-Banach Theorem and other standard
functional analytic results. There are at least two ways to bypass the prob-
lem. The Þrst one is to consider the vector space B0 (Σ) of Σ-measurable
simple functions in place of the whole set B (Σ). This can be enough as long
as one is interested in using results that, like the Hahn-Banach Theorem,
hold on any vector space. There are important results, however, that only
hold on Banach spaces (e.g., the Uniform Boundedness Principle). In this
case B0 (Σ), which is not a Banach space, is useless.
A solution is to consider B (Σ), the supnorm closure B (Σ) of B0 (Σ),8

which is a Banach lattice under the supnorm ([20, p. 258]). B (Σ) is a dense
subset of B (Σ); it holds B (Σ) = B (Σ) when Σ is a σ-algebra, and so in this
case B (Σ) itself is a Banach lattice. If Σ is not a σ-algebra, to work with
the Banach lattice B (Σ) we have to extend on it the Choquet functional νc,
which is originally deÞned on B (Σ).

Lemma 36 Any Choquet functional νc : B (Σ) → R induced by a game
ν ∈ bv (Σ) admits a unique supnorm continuous extension on B (Σ). Such
extension is positively homogenous and comonotonic additive.

Proof. By Proposition 24(iv), νc is Lipschitz continuous on B (Σ). By
standard results ([1, p. 77]), it then admits a unique supnorm continuous
extension on the closure B (Σ). Using its supnorm continuity, such extension
is easily seen to be positively homogeneous. As to comonotonic additivity,
we Þrst prove the following claim.

8That is, f ∈ B (Σ) provided there is a sequence {fn}n ⊆ B0 (Σ) such that
limn kf − fnk = 0. Here we are viewing B0 (Σ) as a subset of the set of all bounded
functions f : Ω→ R.
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Claim. Given any two comonotonic and supnorm bounded functions f and
g, there exist two sequences of simple functions {fn}n and {gn}n uniformly
converging to f and g, respectively, and such that fn and gn are comonotonic
for each n.

Proof of the Claim. It is enough to prove the claim for positive functions.
Let f : Ω → R be positive and supnorm bounded, so that there exists a
constant M > 0 such that 0 ≤ f (ω) ≤ M for each ω ∈ Ω. Let M = αn >
αn−1 > · · · > α1 > α0 = 0, with αi = (i/n)M for each i = 0, 1, ..., n.
Set Ai = (f ≥ αi) for each i = 1, ..., n − 1, and deÞne fn : Ω → R as
fn =

Pn−1
i=1 αi1Ai . The collection of upper sets {(fn ≥ t)}t∈R is included in

{(f ≥ t)}t∈R and kf − fnk = maxi∈{0,...,n−1} (αi+1 − αi) =M/n.
In a similar way, for each n we can construct a simple function gn such

that the collection of upper sets {(gn ≥ t)}t∈R is included in {(g ≥ t)}t∈R
and kg − gnk = M/n. By Lemma 27, the collections {(g ≥ t)}t∈R and
{(f ≥ t)}t∈R together form a chain. Hence, by what we just proved, for each
n the collections {(g ≥ t)}t∈R, {(gn ≥ t)}t∈R, {(f ≥ t)}t∈R, and {(fn ≥ t)}t∈R
together form a chain as well. Again by Lemma 27, fn and gn are then
comonotonic functions, and so the sequences {fn}n and {gn}n we have con-
structed have the desired properties. This completes the proof of the Claim.

Let f, g ∈ B (Σ). Consider the sequences {fn}n and {gn}n of simple
functions given by the Claim. As such sequences belong to B (Σ), by the
supnorm continuity of νc we have:

νc (f + g) = lim
n
νc (fn + gn) = lim

n
νc (fn) + lim

n
νc (gn) = νc (f) + νc (g) ,

as desired. ¥

It is convenient to denote this extension still by νc, and in the sequel
we will write νc : B (Σ) → R. In the enlarged domain B (Σ) the following
cleaner version of Theorem 35 holds. As B (Σ) is a vector space, here we
can consider concavity and quasi-concavity. The latter property is the only
non-trivial feature of the next result relative to Theorem 35.9

9The equivalence between the convexity of ν and the concavity of νc established in
Corollary 37 is also a curious terminological phenomenon, which may give rise to some
confusion. A simple way to avoid any problem is to use the terminology �supermodular
games.�
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Corollary 37 For any game ν in bv (Σ), the following conditions are equiv-
alent:

(i) ν is convex,

(ii) νc is superlinear on B (Σ),

(iii) νc is supermodular on B (Σ),

(iv) νc is concave on B (Σ),

(v) νc is quasi-concave on B (Σ), provided ν (Ω) 6= 0.

Proof. In view of Theorem 35, the only nontrivial part is to show that (v)
implies (iv). We will actually prove the stronger result that (iv) is equivalent
to the convexity of the cone {f : νc (f) ≥ 0}.
Set K =

©
f ∈ B (Σ) : νc (f) ≥ 0

ª
. Given two functions f, g ∈ B (Σ), we

have

νc

µ
f − νc (f)

ν (Ω)
1Ω

¶
= 0, νc

µ
g − νc (g)

ν (Ω)
1Ω

¶
= 0.

Hence, both f − νc(f)
ν(Ω)

1Ω and g − νc(g)
ν(Ω)

1Ω lie in K. By the convexity of K,
taken α ∈ [0, 1] and α ≡ 1− α, we have

αf − ανc (f)
ν (Ω)

1Ω + αg − ανc (g)
ν (Ω)

1Ω ∈ K.

Namely,

νc

µ
αf − ανc (f)

ν (Ω)
1Ω + αg − ανc (g)

ν (Ω)
1Ω

¶
= νc (αf + αg)− ανc (f)− ανc (g) ≥ 0.

Therefore, νc is concave. ¥

Remarks. (i) Dual properties hold for submodular games. For example,
a game ν is submodular if and only if its Choquet functional νc is convex
on B (Σ); equivalently, a game ν is convex if and only if its dual Choquet
functional νc is convex on B (Σ). For brevity, we omit these dual properties.
(ii) Condition ν (Ω) 6= 0 in point (v) is needed. Consider the game ν on Ω =
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{ω1,ω2} with ν (ω1) = 2, ν (ω2) = −1, and ν (Ω) = 0. Being subadditive, ν
is not convex. On the other hand, its Choquet integral is

νc (x1, x2) =

½
2 (x1 − x2) x1 ≥ x2
x1 − x2 x2 > x1

,

which is quasi-concave.

The next result is a Þrst consequence of the use of functional analytic
tools in the study of convex games. The equivalence between (i) and (v) is
due to Schmeidler [56] for positive games and to De Waegenaere and Wakker
[19] for Þnite games; for the other equivalences we refer to Delbaen [12] and
Marinacci and Montrucchio [42].

Theorem 38 For a bounded game ν, the following conditions are equivalent:

(i) ν is convex,

(ii) for any A ⊆ B there is µ ∈ core (ν) such that µ (A) = ν (A) and
µ (B) = ν (B).

(iii) for any Þnite chain {Ai}ni=1, there is µ ∈ core (ν) such that µ (Ai) =
ν (Ai) for all i = 1, ..., n.

(iv) ν ∈ bv (Σ) and, for any chain {Ai}i∈I, there is µ ∈ ext (core (ν)) such
that µ (Ai) = ν (Ai) for all i ∈ I.

(v) ν ∈ bv (Σ) and νc (f) = minµ∈core(ν)
R
fdµ for all f ∈ B (Σ).

(vi) νc (f) = minµ∈core(ν)
R
fdµ for all f ∈ B0 (Σ).

This theorem has a few noteworthy features. First, it shows that bounded
and convex games belong to bv (Σ), so that they always have well deÞned
Choquet integrals on B (Σ). Second, it improves Lemma 28 by showing that
in the convex case the �replicating� measures over chains can be assumed
to be in the core. Finally, Theorem 38 shows that Choquet functionals of
convex games can be viewed as lower envelopes of the linear functional on
B (Σ) induced by the measures in the cores. In other words, convex games
are exact games of a special type, in which the close connection between the
game and the measures in the core holds on the entire space B (Σ), and not
just on Σ.
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Proof. The proof proceeds as follows:

(i) =⇒ (vi) =⇒ (iv) =⇒ (v) =⇒ (iii) =⇒ (ii) =⇒ (i).

(i) implies (vi). Given any f ∈ B0 (Σ), the Choquet integral
R
fdν is

well deÞned since ν ∈ bv (Σf), where Σf is the Þnite algebra generated by f .
Hence, the Choquet functional νc : B0 (Σ) → R exists on the vector space
B0 (Σ), and it is positively homogeneous and translation invariant.
Let f, g : Ω → R be any two functions in B0 (Σ). Let Σf,g be the

smallest algebra that makes both f and g measurable. As Σf,g is Þnite,
ν ∈ bv (Σf,g) and so we can apply Theorem 35 to the restricted Choquet
integral νc : B (Σf,g) → R. Thus, νc (f + g) ≥ νc (f) + νc (g). Since f and
g were arbitrary elements of B0 (Σ), we conclude that νc : B0 (Σ) → R is a
superlinear functional on B0 (Σ).
Let f ∈ B0 (Σ). The algebraic dual of B0 (Σ) is the space fa (Σ) of all

Þnitely additive games on Σ.10 As νc : B0 (Σ) → R is superlinear, by the
Hahn-Banach Theorem there is µc ∈ fa (Σ) such that µc (f) = νc (f) and
µc (g) ≥ νc (g) for each g ∈ B0 (Σ). In other words,

νc (f) = min
µ∈C

µc (f) ,

whereC = {µ ∈ fa (Σ) : µc (f) ≥ νc (f) for each f ∈ B0 (Σ)}. Next we show
that C coincides with the set

C 0 = {µ ∈ fa (Σ) : µ ≥ ν and µ (Ω) = ν (Ω)} .
Let µ ∈ C. Then, µ (A) = µc (1A) ≥ νc (1A) = ν (A) for all A ∈ Σ; moreover,
−µ (Ω) = µc (−1Ω) ≥ νc (−1Ω) = −ν (Ω). Hence, µ ∈ C 0. Conversely,
suppose µ ∈ C 0. As µ ≥ ν and µ (Ω) = ν (Ω), the deÞnition of Choquet
integral immediately implies that νc (f) ≥ µ (f). Hence, µ ∈ C.
It remains to show that C 0 = core (ν). As ba (Σ) ⊆ fa (Σ), core (ν) ⊆

C 0. As to the converse inclusion, suppose µ ∈ C 0. Since ν is bounded, for
each µ ∈ C 0 we have |µ (A)| ≤ 2 supA∈Σ |ν (A)| (see Proposition 3). Then,
µ ∈ ba (Σ) (see [20, p. 97]) and we conclude that C 0 ⊆ core (ν), as desired.
(vi) implies (iv). Consider Þrst a Þnite chain A1 ⊆ ... ⊆ An. By (vi),

there exists µ ∈ core (ν) such that

µc

Ã
nX
i=1

1Ai

!
= νc

Ã
nX
i=1

1Ai

!
.

10Notice that ba (Σ) is the subspace of fa (Σ) consiting of all bounded charges.
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By comonotonic additivity,
Pn

i=1 µ (Ai) =
Pn

i=1 ν (Ai). As µ ∈ core (ν), we
have µ (Ai) ≥ ν (Ai) for all i = 1, ..., n, which in turn implies µ (Ai) = ν (Ai)
for all i = 1, ..., n.
Now, let {Ai}i∈I be any chain in Σ. Let ΣJ be the (Þnite) algebra gener-

ated by a Þnite subchain {Ai}i∈J and

ΛJ = {µ ∈ core (ν) : µ (Aj) = ν (Aj) for all j ∈ J} .

Since core (ν) is weak∗-compact, the set ΛJ is weak∗-compact. Moreover, it
is convex and, by what we just proved, ΛJ 6= ∅. It is easily seen that ΛJ is
also extremal in core (ν).
The collection of weak∗-compact sets {ΛJ}{J:J⊆I and |J |<∞} has the Þnite

intersection property, and so its overall intersection
T
{J :J⊆I and |J |<∞} ΛJ is

nonempty. Moreover, such intersection is extremal in core (ν). Being convex
and weak∗-compact, by the Krein-Milman Theorem

T
{J :J⊆I and |J |<∞} ΛJ has

then an extreme point µ. We conclude that µ ∈ ext (core (ν)) and µ (Ai) =
ν (Ai) for all i ∈ I, as desired.
To complete the proof that (vi) implies (iv) it remains to show that ν ∈

bv (Σ). Since core (ν) is weak∗-compact, it is bounded; i.e., there exists
M ∈ R such that kµk ≤ M for all µ ∈ core (ν). Since, given any Þnite
chain ∅ = A0 ⊆ A1 ⊆ · · · ⊆ An = Ω, there exists µ ∈ core (ν) such that
µ (Ai) = ν (Ai) for all i = 0, ..., n, we conclude that

nX
i=1

|ν (Ai)− ν (Ai−1)| ≤ kµk ≤M .

(iv) implies (v). Let f ∈ B (Σ). Since νc is translation invariant, assume
w.l.o.g. that f ≥ 0. Consider the chain Γ of all upper sets {(f ≥ t)}t∈R.
Given any µ ∈ core (ν), the following holds:

νc (f) =

Z
ν (f ≥ t) dt ≤

Z
µ (f ≥ t) dt = µ (f) .

By (iv), there is µ ∈ core (ν) such that ν (A) = µ (A) for all A ∈ Γ. Hence,

νc (f) =

Z
ν (f ≥ t) dt =

Z
µ (f ≥ t) dt = µ (f) ,

and we conclude that νc (f) = minµ∈core(ν)
R
fdµ.
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SinceB (Σ) is supnorm dense inB (Σ), the supnorm continuous functional
νc : B (Σ)→ R given by Lemma 36 is superlinear. By proceeding as before,
we can show that:

core (ν) = {µ ∈ ba (Σ) : µc (f) ≥ νc (f) for each f ∈ B0 (Σ)}
=

©
µ ∈ ba (Σ) : µc (f) ≥ νc (f) for each f ∈ B (Σ)

ª
Hence, by the Hahn-Banach Theorem:

νc (f) = min
©
µc (f) : µ ∈ ba (Σ) and µc (g) ≥ νc (g) for each g ∈ B (Σ)

ª
= min {µc (f) : µ ∈ ba (Σ) and µc (g) ≥ νc (g) for each g ∈ B0 (Σ)}
= min {µc (f) : µ ∈ core (ν)} = min

µ∈core(ν)

Z
fdµ,

as desired.
(v) implies (iii). Consider a Þnite chain {Ai}ni=1 and set f =

Pn
i=1 1Ai. By

(v), there is µ ∈ core (ν) such that µ (f) = ν (f). By comonotonic additivity,Pn
i=1 µ (Ai) =

Pn
i=1 ν (Ai), and so

Pn
i=1 [µ (Ai)− ν (Ai)] = 0. Since µ ≥ ν

we conclude that µ (Ai) = ν (Ai) for each i = 1, ..., n, as desired.
As (iii) trivially implies (ii), it remains to show that (ii) implies (i). Given

any A and B, by (ii) there is µ ∈ core (ν) such that ν (A) = µ (A) and
ν (B) = µ (B). Hence,

ν (A ∩B) + ν (A ∪B) = µ (A ∩B) + µ (A ∪B)
= µ (B) + µ (A) ≥ ν (B) + ν (A) ,

where the last inequality follows from µ ∈ core (ν). ¥

We close with some characterizations of convexity through properties of
subgames, thus providing an �hereditary� perspective on it.

Theorem 39 For a bounded game ν, the following conditions are equivalent:

(i) ν is convex,

(ii) each subgame of ν is exact,

(iii) ν is totally balanced and, given any A ⊆ B, each charge in core (νA)
has an extension belonging to core (νB).
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(iv) ν is balanced and, given any Þnite subalgebra Σ0 of Σ, each charge in
core (νΣ0) has an extension on Σ belonging to core (ν).

The equivalence between (i) and (iv) is essentially due to Kelley [35] (see
also [12, p. 218]), that between (i) and (ii) to Biswas et al. [6, p. 10], and
that between (i) and (iii) to Einy and Shitovitz [21, pp. 197-199].
The second part of condition (iii) is a property introduced by Kikuta

and Shapley [37]. They call extendable the games satisfying this property
for B = Ω, which turns out to be useful in studying the von Neumann-
Morgenstern stability of cores.11

The proof of Theorem 39 uses the following straightforward lemma. In
this regard, notice that Schmeidler [57, p. 219] gives an example of an exact
game with four players that is not convex.

Lemma 40 A Þnite game with at most three players is exact if and only if
it is convex.

Proof of Theorem 39. For convenience, we Þrst prove the equivalence
between (i)-(iii), and then that between (i) and (iv).

(ii) implies (i). Given any A and B, consider the subgame νA∪B. By (ii),
there is µ ∈ core (νA∪B) such that µ (A ∩B) = νA∪B (A ∩B). Hence,

ν (A ∪B) + ν (A ∩B) = νA∪B (A ∪B) + νA∪B (A ∩B)
= µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B)
≥ νA∪B (A) + νA∪B (B) = ν (A) + ν (B) ,

as desired.

(i) implies (iii). Since A ⊆ B, the space B0 (ΣA) of simple ΣA-measurable
functions can be regarded as a vector subspace of B0 (ΣB). Let µ ∈ core (νA).
Given any f ∈ B+0 (ΣA), it holds νA,c (f) = νB,c (f), where νA,c : B0 (ΣA)→
R is the Choquet functional induced by the subgame νA (νB,c is similarly
deÞned). Therefore, µ (f) ≥ νB,c (f) for all f ∈ B+0 (ΣA).
Given any f ∈ B0 (ΣA), there is k > 0 large enough so that f + k1A ∈

B+0 (ΣA). Since µ (A) = ν (A), by Theorem 35 we have:

µ (f)+kµ (A) = µ (f + k1A) ≥ νB,c (f + k1A) ≥ νB,c (f)+kν (A) = νB,c (f)+kµ (A) .
11See, e.g., [6] and the references therein contained. For characterizations of convexity

and exactness related to stability, see [36] and [64].
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Hence, µ (f) ≥ νB,c (f). We conclude that µ (f) ≥ νB,c (f) for all f ∈
B0 (ΣA).
By the Hahn-Banach Theorem, there exists a charge µ∗ : ΣB → R which

extends µ and such that µ∗ (f) ≥ νB,c (f) for all f ∈ B0 (ΣB). Hence,
µ∗ ∈ core (νB).
(iii) implies (ii). Given any B, let νB be the associated subgame. Given

any A ⊆ B, let µ ∈ core (νA). By hypothesis, there is µ∗ ∈ core (νB) that
extends µ. Hence, µ∗ (A) = µ (A) = νA (A) = νB (A), which implies that νB
is exact, as desired.

To complete the proof it remains to show that (iv) is equivalent to (i).

(i) implies (iv). Let µ ∈ core (νΣ0). By Theorem 38, ν ∈ bv (Σ), and
so νc : B0 (Σ) → R is superlinear by Theorem 35. By the Hahn-Banach
Theorem, there is µ∗ ∈ ba (Σ) that extends µ and such that µ∗ (f) ≥ νc (f)
for all f ∈ B0 (Σ). Hence, µ∗ ∈ core (ν).
(iv) implies (i). If µ ∈ core (ν), then its restriction µΣ0 on any subalgebra

Σ0 belongs to core (νΣ0). Therefore, the fact that ν is balanced implies that
core (νΣ0) 6= ∅ for each Σ0. In particular, (iv) implies that:

core (νΣ0) =
©
µΣ0 ∈ ba (Σ0) : µ ∈ core (ν)

ª
. (20)

Given any A, consider Þrst the Þnite subalgebra Σ0 = {∅, A,Ac,Ω}. It
is easy to see that there exists an element of core (νΣ0) that on A takes on
value ν (A). By (20), this amounts to say that there exists µ ∈ core (ν) such
that µ (A) = µΣ0 (A) = ν (A). We conclude that ν is exact.
Given any A and B, consider the Þnite subalgebra Σ0 generated by the

partition {A ∩B, (A ∪B)c , A ∪B\A ∩B}. Let C ∈ Σ0. As ν is exact,
there is µ ∈ core (ν) such that µ (C) = ν (C). As µΣ0 ∈ core (νΣ0), we have
µΣ0 (C) = νΣ0 (C) and so νΣ0 is exact. Since Σ0 is generated by a partition
consisting of three elements, Lemma 40 then implies that νΣ0 is convex. Since
A ∩B,A ∪B ∈ Σ0, by Theorem 38 and (20) there is µ ∈ core (ν) such that
µΣ0 (A ∩B) = νΣ0 (A ∩B) and µΣ0 (A ∪B) = νΣ0 (A ∪B). Hence,
ν (A ∪B) + ν (A ∩B) = νΣ0 (A ∪B) + νΣ0 (A ∩B)

= µΣ0 (A ∪B) + µΣ0 (A ∩B) = µ (A ∪B) + µ (A ∩B)
= µ (A) + µ (B) ≥ ν (A) + ν (B) ,

which shows that ν is convex. ¥
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6 Finite Games

6.1 The Space of Finite Games

Games deÞned on Þnite spaces have some noteworthy peculiar properties,
thanks to the special form of their domain. We devote this section to their
study.12

Let Ω be a Þnite set {ω1, ...,ωn} of n players and Σ its power set. Vn
denotes the space of all Þnite games on Σ, which is a vector space under the
setwise operations ν1 + ν2 and αν for ν1, ν2, ν ∈ Vn and α ∈ R.
The next result, due to Shapley [61, Lemma 3], shows the crucial impor-

tance of unanimity games, introduced in Example 20.

Theorem 41 Unanimity games form a basis for the
¡
2|Σ| − 1¢-dimensional

vector space Vn. For any ν ∈ Vn, the unique coefficients satisfying ν =P
∅ 6=A∈Σ α

ν
AuA are given by

ανA =
X
B⊆A

(−1)|A|−|B| ν (B) . (21)

Proof. We Þrst show that unanimity games are linearly independent in Vn.
Suppose

Pn
i=1 αiuAi = θ, where θ is the trivial game such that θ (A) = 0 for

each A. We want to show that αi = 0 for each i = 1, ..., n. Suppose, per
contra, that there is a subset I ⊆ {1, ..., n} such that αi 6= 0 for each i ∈ I.
As in [45, p. 440], let i0 ∈ I be such that Ai0 is of minimal size among the
coalitions {Ai}i∈I . By construction, αi = 0 for each i such that Ai $ Ai0 , so
that

0 =
nX
i=1

αiuAi (Ai0) =
X

{i:Ai⊆Ai0}
αiuAi (Ai0) = αi0,

a contradiction.
To complete the proof it remains to prove that, for each ν ∈ Vn, it holds:

ν =
X

∅ 6=A∈Σ

ÃX
B⊆A

(−1)|A|−|B| ν (B)
!
uA.

The needed combinatorial argument is detailed in, e.g., [48, p. 263], to which
we refer the reader. ¥
12Needless to say, the properties we will establish for Þnite games also hold for games

deÞned on Þnite algebras of subsets of inÞnite spaces.
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Example 42 For a charge µ we have:

αµA =

½
µ (ω) if A = {ω}
0 else

That is, a game is additive if and only if all coefficients in (21) associated
with non singletons are zero. N

Example 43 Let f : R→ R with f (0) = 0. Its Þrst difference is ∆f (n) =
f (n+ 1) − f (n). By iteration, the k-order difference is ∆kf = ∆∆k−1f .
Consider the scalar measure game ν : 2{1,...,n} → R deÞned by ν (A) = f (|A|)
for each A ⊆ {1, ..., n}. The following holds:

ανA = ∆
|A|f (0) . (22)

To see why this the case, observe that (21) implies

ανA = f (m)−
µ
m

1

¶
f (m− 1) +

µ
m

2

¶
f (m− 2)− .... =

=
mX
k=0

(−1)k
µ
m

k

¶
f (m− k) ,

where we set |A| = m. Denote by I : N → N the identity operator and by
S : N→ N the shift operator deÞned by Sf (m) = f (m+ 1). As ∆ = S − I,
we have

∆m = (S − I)m =
mX
k=0

(−1)k
µ
m

k

¶
Sm−k.

Hence

∆mf (0) =
mX
k=0

(−1)k
µ
m

k

¶
Sm−kf (0) =

mX
k=0

(−1)k
µ
m

k

¶
f (m− k) ,

and so (22) holds. N

By Theorem 41, each game ν is uniquely determined by the coefficients
{ανA} given by (21). A natural question is whether there is a signiÞcant class
of games identiÞed by the requirement that all such coefficients be positive.
Fortunately, Theorem 46 will show that there is such a class, which we now
introduce.
A game ν : Σ→ R is
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14. monotone of order k (with k ≥ 2) if, for every A1, ..., Ak ∈ Σ,

ν

Ã
k[
i=1

Ai

!
≥

X
{I:∅ 6=I⊆{1,...,k}}

(−1)|I|+1 ν
Ã\
i∈I
Ai

!
. (23)

15. totally monotone if it is positive and k-monotone for all k ≥ 2.
16. a belief function if it is a totally monotone probability.

These deÞnitions work for any algebra Σ, not necessarily Þnite. For k = 2,
we get back to convexity. Hence, totally monotone games are convex, though
the converse is false. When ν is a charge, in (23) we have an equality.
Totally monotone games are studied at length in Choquet (1953), and

belief functions play a central role in the works of Dempster and Shafer (see
[15], [16], and [60]). They are also related to the theory of Mobius transforms
pioneered by Rota [51], as detailed in [10] and [28] (see also Subsection 4.4
below).

Example 44 All {0, 1}-valued convex games (e.g., unanimity games) are
totally monotone (see, e.g., [40, p. 1005] for a proof). N

Example 45 Let (Ω1,Σ1, P1) be a probability space and Ω2 a Þnite space.
A correspondence f : Ω1 → 2Ω2 is a random set if it is measurable, that
is, f−1 (A) = {ω ∈ Ω1 : f (ω) ⊆ A} ∈ Σ1 for each A ⊆ Ω2. Consider the
distribution νf : Σ2 → R induced by a random set f , deÞned by νf (A) =
P (f−1 (A)) for eachA ∈ Σ2. The distribution νf is a belief function (see, e.g.,
[46]). Random sets reduce to standard random variables when the images
f (ω) are singletons; in this case, νf is the usual additive distribution induced
by a random variable f . Under suitable topological conditions, random sets
with values in inÞnite spaces Ω2 can also be considered (there is a large
literature on them; see, e.g., [54]). N

We can now state the announced result.

Theorem 46 Let ν be a game deÞned on the power set Σ of a Þnite space Ω.
Then, the coefficients given by (21) are all positive if and only if ν is totally
monotone.
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Remark. This theorem is essentially due to Dempster and Shafer (see [60]).
It has been extended to games on lattices by Gilboa and Lehrer [25].

Proof. �If part�. Suppose ν is totally monotone. If |A| = 1, then ανA =
ν (A) ≥ 0. Suppose |A| > 1 and set A = {ω1, ...,ωk} and Ai = A \ {ωi} for
each i = 1, ..., k. We have

ανA =
X
B⊆A

(−1)|A|−|B| ν (B)

= ν (A)−
X
i

ν (Ai) +
X
i6=j
ν (Ai ∩ Aj)− ..+ (−1)k ν (A1 ∩ ... ∩Ak)

= ν (A)−
X

∅ 6=I⊆{1,..,k}
(−1)|I|+1 ν

Ã\
i∈I
Ai

!
.

As A =
Sk
i=1Ai, we then have

ανA = ν

Ã
k[
i=1

Ai

!
−

X
∅ 6=I⊆{1,..,k}

(−1)|I|+1 ν
Ã\
i∈I
Ai

!
,

so that ανA ≥ 0, as desired.
�If� part. Suppose ανA ≥ 0 for each ∅ 6= A ∈ Σ. By Example 44, each

unanimity game uA is totally monotone. Hence, by Theorem 41, we have
ν =

P
∅ 6=A α

ν
AuA. The positive linear combination of totally monotone game

is clearly totally monotone. We infer that ν is totally monotone as desired.
¥
Example 47 Given a function f : N → R with f (0) = 0, each scalar mea-
sure game f (|A|) is totally monotone if and only if f is absolutely monotone
à la Bernstein, that is, ∆kf (n) ≥ 0 for each n and k (see [69]). By (22) and
by Theorem 46, to prove this fact it is enough to show that f is absolutely
monotone if and only if ∆kf (0) ≥ 0 for each k. As

∆nSk = ∆n [∆+ I]k = ∆n
kX
r=1

µ
k

r

¶
∆r =

kX
r=1

µ
k

r

¶
∆r+n,

we get

∆nf (k) =
kX
r=1

µ
k

r

¶
∆r+nf (0) ≥ 0,

which gives the desired conclusion. N
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Totally monotone games are therefore the convex cone of Vn consisting
of all its elements featuring positive coefficients in (21). Denote this cone by
V +n ; being pointed,

13 it induces a partial order º on Vn deÞned by ν º ν 0 if
ν−ν0 ∈ V +n . In particular, ν º θ if and only if ν is totally monotone, so that
V +n = {ν ∈ Vn : ν º θ}.
The partial order º makes Vn an ordered vector space. More is true,

under the lattice operations ∨ and ∧ induced by º.14

Lemma 48 The ordered vector space (Vn,º) is a Riesz space with lattice
operations given by

ν1 ∨ ν2 = Σ∅ 6=A∈Σ (αν1A ∨ αν2A ) uA,

and
ν1 ∧ ν2 = Σ∅ 6=A∈Σ (αν1A ∧ αν2A ) uA,

for each ν1 and ν2 in Vn.

Proof. We only prove the result for ν1 ∨ ν2, as a similar argument can be
used for ν1 ∧ ν2. Set bν = Σ∅ 6=A∈Σ (α

ν1
A ∨ αν2A )uA. We want to show thatbν = ν1 ∨ ν2. First observe that, for i = 1, 2,

bν − νi = Σ∅ 6=A∈Σ [(αν1A ∨ αν2A )− ανiA ] uA.
Hence, by Theorem 46, bν − νi ∈ V +n , all coefficients [(αν1A ∨ αν2A )− ανiA ] being
positive. This shows that bν is an upper bound for {ν1, ν2}. It remains to
show that it is the least such bound, i.e., bν0 º bν for any game bν0 such thatbν0 º νi for i = 1, 2.
As bν 0 − νi ∈ V +n , it holds

Σ∅ 6=A∈Σαbν0AuA − Σ∅ 6=A∈ΣανiAuA = Σ∅ 6=A∈Σαbν0−νiA uA ∈ V +n .

By Theorem 46, αbν0−νiA ≥ 0 for each A, and so αbν0A ≥ ανiA for each A. There-
fore, αbν0A ≥ αν1A ∨ αν2A for each A, and so the difference

bν0 − bν = Σ∅ 6=A∈Σ hαbν0A − (αν1A ∨ αν2A )i uA
13I.e., V + ∩ (−V +) = {0}.
14See [1, pp. 263-330] for a deÞnition of these lattice operations, as well as for all notions

on vector lattices needed in the sequel.
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belongs to V +n by Theorem 46, all the coefficients αbν0A − (αν1A ∨ αν2A ) being
positive. We conclude that bν0 º νi for each i, as desired. ¥
The Riesz space (Vn,º) is lattice isomorphic to the Euclidean space³

R2|Σ|−1,≥
´
.

Lemma 49 The function T : Vn → R2|Σ|−1 deÞned by

T (ν) = (ανA) for all ν ∈ Vn

is a lattice preserving isomorphism between (Vn,º) and
³
R2|Σ|−1,≥

´
.

Proof. By Theorem 41, the vector (ανA) is uniquely determined. Hence, T
is one-to-one. Now, let ν1, ν2 ∈ Vn and α,β ∈ R. By Theorem 41,

T (αν1 + βν2) =
³
ααν1+βν2A

´
=

ÃX
B⊆A

(−1)|A|−|B| (αν1 + βν2) (B)
!

=

Ã
α
X
B⊆A

(−1)|A|−|B| ν1 (B) + β
X
B⊆A

(−1)|A|−|B| ν2 (B)
!

= αT (ν1) + βT (ν2) ,

and so T is an isomorphism. Moreover, by Lemma 48,

T (ν1 ∨ ν2) = T (ν1) ∨ T (ν2) = (αν1A ∨ αν2A ) ∈ R2
|Σ|−1,

T (ν1 ∧ ν2) = T (ν1) ∧ T (ν2) = (αν1A ∧ αν2A ) ∈ R2
|Σ|−1,

as desired. ¥

By Lemma 48, the positive ν+ and negative ν− parts of a game ν, deÞned
by ν+ = ν ∨ 0 and ν− = − (ν ∧ 0), are given by:

ν+ = Σ∅ 6=A∈Σ (ανA ∨ 0)uA,
ν− = Σ∅ 6=A∈Σ (ανA ∧ 0)uA.

The absolute value |ν|, deÞned by |ν| = ν+ + ν−, is then given by

|ν| = Σ∅ 6=A∈Σ |ανA|uA.
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Notice that

ν+ = T−1
¡
(ανA)

+¢ , ν− = T−1 ¡(ανA)−¢ , and |ν| = T−1 (|ανA|) ,
in accordance with Lemma 49.
The associated norm k·kc is given by kνkc = |ν| (Ω) = ν+ (Ω) + ν− (Ω)

for each ν ∈ Vn, that is,

kνkc = Σ∅ 6=A∈Σ |ανA| = kT (ν)k1 . (24)

Following Gilboa and Schmeidler [27], we call k·kc the composition norm. It
is an L-norm since kν1 + ν2kc = kν1kc+ kν1kc whenever ν1 and ν2 belong to
V +n . As a result, (Vn,º, k·kc) is an AL-space.
Since

kνkc = Σ∅ 6=A∈Σ |ανA| = kT (ν)k1 , (25)

where k·k1 is the l1-norm of R2
|Σ|−1, the isomorphism T is therefore an isom-

etry between (Vn, k·kc) and
³
R2|Σ|−1, k·k1

´
.15

Summing up:

Theorem 50 There is a lattice preserving and isometric isomorphism T

between the AL-spaces (Vn,º, k·kc) and
³
R2|Σ|−1,≥, k·k1

´
determined by the

identity
ν = Σ∅ 6=A∈ΣαAuA. (26)

Moreover, ν is totally monotone if and only if the corresponding vector (αA)
in R2|Σ|−1 is nonnegative.

In other words, for each ν in Vn there is a unique (αA) in R2
|Σ|−1 such

that (26) holds; conversely, for each vector (αA) in R2
|Σ|−1 there is a unique

ν in Vn such that (26) holds. Moreover, the correspondence T between ν and
(αA) is linear, lattice preserving, and isometric.

Consider the restriction of the partial order º on ba (Σ), the vector sub-
space of Vn consisting of charges. Since ba+ (Σ) = V +n ∩ ba (Σ), given any µ1
and µ2 in ba (Σ), we have µ1 º µ2 if and only if µ1 − µ2 ∈ ba+ (Σ). Equiv-
alently, µ1 º µ2 if and only if µ1 ≥ µ2 setwise, that is, µ1 (A) ≥ µ2 (A) for

15The l1-norm k·k1 of Rn is given by kxk1 =
Pn
i=1 |xi| for each x ∈ Rn.
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each A. This is the standard partial order studied on ba (Σ) (see, e.g., [5]),
which can therefore be viewed as the restriction of º on ba (Σ). As a result,
the standard lattice structure on ba (Σ) coincides with the one it inherits as
a subspace of (Vn,º). In particular, on ba (Σ) the norm k·kc reduces to the
total variation norm k·k.
All this shows that the standard structures on ba (Σ) studied in measure

theory are consistent with the ones we have identiÞed on Vn so far. In the
sequel we will denote by ºba the restriction of º on ba (Σ).

6.2 A Decomposition

The lattice structure of Vn suggests the possibility of achieving a decomposi-
tion à la Riesz for Þnite games. Given the close connection between k·k and
the l1-norm k·k1 established in Theorem 50, it is natural to expect that such
decomposition would resemble the one available for the familiar l1-norm. For
this reason, we Þrst recall a simple decomposition result for the l1-norm.

Lemma 51 Given any z ∈ Rn, the vectors z+ and z− are the unique vectors
in Rn+ such that

z = z+ − z−, (27)

and
kzk1 =

°°z+°°
1
+
°°z−°°

1
. (28)

Proof. Clearly, the decomposition z = z+−z− satisÞes (28). Suppose x, y ∈
Rn+ satisfy (27). We want to show that x ≥ z+ and y ≥ z−. As x = z + y,
x ≥ z, we have x ≥ z+. Likewise, y = x− z =⇒ y ≥ −z =⇒ y ≥ z−.
On the other hand, we have

kxk1 + kyk1 ≥
°°z+°°

1
+
°°z−°°

1
= kzk1 .

As kxk1 ≥ kz+k1 and kyk1 ≥ kz−k1, to get (28) we must have kxk1 = kz+k1
and kyk1 = kz−k1 . Hence, x = z+ and y = z−. ¥

Lemma 51 leads to the following decomposition result, which generalizes
in our Þnite setting the Jordan Decomposition Theorem for charges. Versions
of this result for Þnite and inÞnite games have been proved by Revuz [50],
Gilboa and Schmeidler [26] and [27], and Marinacci [40].
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Theorem 52 Given any ν ∈ Vn, the games ν+ and ν− are the unique totally
monotone games such that

ν = ν+ − ν− (29)

and
kνkc =

°°ν+°°
c
+
°°ν−°°

c
. (30)

Proof. Let ν1 and ν2 be any two games in V +n satisfying (29) and (30).
Then, the positive vectors T (ν1) and T (ν2) of R2

|Σ|−1
+ are such that

T (ν) = T (ν1)− T (ν2) , and
kT (ν)k1 = kT (ν1)k1 + kT (ν2)k1 .

By Lemma 51, T (ν1) = T (ν)+ = T (ν+) and T (ν1) = T (ν)− = T (ν−).
Since T is an isomorphism, we conclude that ν1 = ν+ and ν2 = ν−, as
desired. ¥

6.3 Additive Representation

By Theorem 41, each Þnite game ν can be uniquely written as

ν =
X

∅ 6=A∈Σ
ανAuA, (31)

LetΣ0 be the collection of all nonempty sets ofΣ, that is, Σ0 = {A ∈ Σ : A 6= ∅}.
The collection Σ0 can be viewed as new space, whose �points� are the non-
empty sets of Σ. By identifying Ω with the collection of all singletons
{{ω} : ω ∈ Ω}, we can actually view the space Σ0 as an enlargement of the
original space Ω.
DeÞne on the power set 2Σ

0
of the space Σ0 a charge µν as follows: µν (A) =

ανA for each A ∈ Σ0. By additivity, this is enough to deÞne the charge µν
on the entire power set 2Σ

0
. For example, for the set {A,B} ∈ 2Σ0 we have

µν ({A,B}) = ανA + ανB; more generally, given any collection {A1, ..., An} ∈
2Σ

0
, we have µν ({A1, ..., An}) =

Pn
i=1 α

ν
Ai
.

Each game ν is thus associated with a charge µν on 2
Σ0 . Denote by

I : Vn → ba
¡
2Σ

0¢
this correspondence ν 7→ µν , which is well deÞned by

Theorem 41. It is also linear, that is, I (αν1 + βν2) = αI (ν1) + βI (ν2) for
all α, β ∈ R and all ν1, ν2 ∈ Vn.
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The linear correspondence I provides some noteworthy insights into Cho-
quet integrals. To see why, given a set E consider the function e1E : Σ0 → R
deÞned by e1E (A) = Z

Ω

1EduA = uA (E) =

½
1 A ⊆ E
0 else

for each A. If we set eE = {A ∈ Σ0 : A ⊆ E}, then e1E = 1 eE. That is, e1E is a
characteristic function on the enlarged space Σ0.
Using µν and e1E, we can rewrite (31) as

ν (E) =
X
A∈Σ0

e1E (A)µν (A) = Z
Σ0
e1Edµν = Z

Σ0
1 eEdµν = µν

³ eE´
for each E ∈ Σ. Equivalently,Z

Ω

1Edν =

Z
Σ0
1 eEdµν for each E ∈ Σ. (32)

Therefore, thanks to the linear correspondence I we can represent the Cho-
quet integral

R
1Edν as a standard additive integral on the enlarged space

Σ0. In this extended domain, the set E of Σ is replaced by the set eE =
{A ∈ Σ0 : A ⊆ E} of Σ0. We call R

Σ0 1 eEdµν the additive representation ofR
1Edν.
In a sense, (32) says that the Choquet integral

R
1Edν can be viewed

as a �zipped� version of the additive integral
R
Σ0 1 eEdµν. The trade-off here

is between a more economical domain � i.e., (Ω,Σ) rather than
¡
Σ0, 2Σ

0¢
�

and a better behaved integral � i.e., the additive integral rather than the
non-additive one.
In any case, to compute both representations we need to know the 2|Ω|−1

values of ν and µν, respectively; hence, both representations involve the same
amount of information, though processed in different ways.
Next we formally collect the relevant properties of the additive represen-

tation. Observe that the correspondence I is actually an isomorphism.16

Theorem 53 There is a lattice preserving and isometric isomorphism I be-
tween the AL-spaces (Vn,º, k·k) and

¡
ba
¡
2Σ

0¢
,ºba, k·k

¢
determined by the

identity
ν (E) = µ

³ eE´ for each E ∈ Σ. (33)

16In the statement ºba denotes the restriction of º on ba (Σ) as discussed right after
Corollary 50.
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The game ν is totally monotone if and only if the corresponding µ is non-
negative.

Versions of this result for Þnite and inÞnite games can be found in Revuz
[50], Gilboa and Schmeidler [26] and [27], Marinacci [40], and Philippe, Debs,
and Jaffray [49]. Denneberg [18] provides an overview and alternative proofs
of some of these results.

Proof. Given a charge µ ∈ ba ¡2Σ0¢, the set function ν on Σ deÞned by (33)
is clearly a game. As to the converse, the charge µν deÞned above belongs to
ba
¡
2Σ

0¢
and satisÞes (33). It is also the unique charge in ba

¡
2Σ

0¢
satisfying

(33). In fact, let µ be any other charge in ba
¡
2Σ

0¢
satisfying (33). Consider

the collection eΣ = n eE : E ∈ Σo of subsets of Σ0. As
Ê1 ∩E2 = eE1 ∩ eE2 and Ê1 ∪ E2 ⊇ eE1 ∪ eE2,

the collection eΣ is, in general, only closed under intersections, that is, it is
a π-class (see, e.g., [1, p. 132]). As µ and µν coincide on a π-class, they

coincide on the algebra A
³eΣ´ generated by eΣ (see, e.g., [1, Thm 9.10]).

But, A
³eΣ´ coincides with the power set 2Σ0 of Σ0. For, A³eΣ´ contains all

singletons: given A ∈ Σ0, we have {A} = eA\Â− ω for any ω ∈ A. As a
result, µ and µν coincide on the power set 2

Σ0 , thus proving that µν is the
unique charge in ba

¡
2Σ

0¢
satisfying (33).

All this shows that the linear correspondence I we introduced above is
an isomorphism between Vn and ba

¡
2Σ

0¢
. It is also an isometry: the equality

kI (ν)k = kνkr follows from

kµνk =
X
A∈Σ0

|µν (A)| =
X
A∈Σ0

|ανA| = kνkr .

It remains to show that I is lattice preserving. We will only consider ∨,
the argument for ∧ being similar. For each A ∈ Σ0, we have:

µν1∨ν2 (A) = α
ν1
A ∨ αν2A = max

©
µν1 (A) , µν2 (A)

ª
=
¡
µν1 ∨ µν2

¢
(A) ,

as desired (the last equality holds because A is a singleton when viewed as a
member of Σ0). ¥
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The additive representation is not limited to integrals of characteristic
functions, but it holds for all functions in B (Σ). To see why this is the case,
observe that the additivity of the Riemann integral immediately implies that
the Choquet integral is linear on games, that is,

R
fd (ν1 + ν2) =

R
fdν1 +R

fdν2 for any ν1 and ν2 in Vn. Therefore, (31) implies that:Z
Ω

fdν =

Z
Ω

fd

ÃX
A∈Σ0

ανAuA

!
=
X
A∈Σ0

ανA

Z
Ω

fduA (34)

for each f ∈ B (Σ). DeÞne a function ef : Σ0 → R by

ef (A) = Z
Ω

fduA for each A ∈ Σ0. (35)

As
R
fduA = minω∈A f (ω) (see Example 20), it actually holds

ef (A) = min
ω∈A

f (ω) for each A ∈ Σ0.

By (34) we haveZ
Ω

fdν =
X
A∈Σ0

ανA
ef (A) = X

A∈Σ0
ανAmin

ω∈A
f (ω) =

Z
Σ0
efdµν,

and so the representation (34) can be written as:Z
Ω

fdν =

Z
Σ0
efdµν for each f ∈ B (Σ) . (36)

This is the desired extension of (32) to all functions in B (Σ). In fact, if
f = 1E, we have ef = 1 eE, and so (36) reduces to (32) for characteristic
functions.
Summing up, the additive representation of the Choquet integral

R
fdν

is given by Z
Σ0
efdµν = Z

Σ0
min
ω∈A

f (ω) dµν =
X
A∈Σ0

ανAmin
ω∈A

f (ω) .

Theorem 53 can be extended from games to Choquet integrals along these
lines. In order to do so, consider the space V cn of all Choquet functionals on
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B (Σ). It is a vector space since (αν0 + βν 00)c = αν
0
c + βν

00
c for all ν

0, ν 00 ∈ Vn
and all α, β ∈ R. By the next result, V cn is isomorphic to the dual space
B
¡
2Σ

0¢∗
of B

¡
2Σ

0¢
.17

Corollary 54 There is an isomorphism between the vector spaces V cn and
B
¡
2Σ

0¢∗
determined by the identity

νc (f) = µ
³ ef´ for each f ∈ B (Σ) . (37)

In particular, I (ν) = µ, where ν is the game associated to νc and I is the
isomorphism of Theorem 53.

Remark. For convenience, here µ denotes the linear functional in B
¡
2Σ

0¢∗
given by

R
fdµ for each f ∈ B ¡2Σ0¢.

Proof. We Þrst show that given any µ ∈ B
¡
2Σ

0¢∗
, the functional νc :

B (Σ)→ R deÞned by (37) is comonotonic additive. Observe that, given any
two comonotonic f1 and f2 in B (Σ), it holds:³

f̂1 + f2

´
(A) = min

ω∈A
(f1 + f2) (ω)

= min
ω∈A

f1 (ω) + min
ω∈A

f2 (ω) = ef1 (A) + ef2 (A) (38)

for each A ∈ Σ0. Hence,

νc (f1 + f2) = µ
³
f̂1 + f2

´
= µ

³ ef1 + ef2´
= µ

³ ef1´+ µ³ ef2´ = νc (f1) + νc (f2) ,
and so νc is comonotonic additive, as desired.
It remains to prove that, given any Choquet functional νc ∈ V cn , the

functional µ deÞned by (37) is linear on B
¡
2Σ

0¢
. By Theorem 53, Eq. (37)

uniquely determines a charge µ on the power set 2Σ
0
. Hence, the associated

linear functional
R
fdµ belongs to B

¡
2Σ

0¢∗
, as desired. ¥

17B
³
2Σ

0
´∗

is the vector space of all linear functionals deÞned on the vector space

B
³
2Σ

0
´
of all functions deÞned on the enlarged space Σ0.
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6.4 Polynomial Representation

A further possible way to represent Þnite games is in terms of polynomials.
Consider the set {0, 1}n of the vertices of the hypercube [0, 1]n. Functions
f : {0, 1}n → R are called pseudo-Boolean (see [8] and [28]).
Say that a pseudo-Boolean function f is grounded if f (0, ..., 0) = 0. Fi-

nite games can be regarded as grounded pseudo-Boolean functions. In fact,
w.l.o.g. set Ω = {1, ..., n} and Σ = 2{1,...,n}, so that Vn is the set of all games
ν : 2{1,...,n} → R. Given A ⊆ {1, ..., n}, consider the characteristic vector
1A ∈ {0, 1}n given by:

1A (i) =

½
1 i ∈ A
0 else

Since {0, 1}n = {1A : A ⊆ {1, ..., n}}, each game ν uniquely determines a
grounded pseudo-Boolean function f by setting f (1A) = ν (A) for each A ⊆
{1, ..., n}. Conversely, each grounded pseudo-Boolean function f induces a
game ν : 2{1,...,n} → R by setting ν (A) = f (1A) for each A ⊆ {1, ..., n}.
Given a pseudo-Boolean function f , consider the polynomial

Bf (x) =
X

A⊆{1,...,n}
f (1A)

Y
i∈A
xi
Y
j∈Ac

(1− xj) for each x ∈ Rn. (39)

This polynomial is an extension of f on Rn as Bf (1A) = f (1A) for each
A ⊆ {1, ..., n}. More important, Bf is a Bernstein polynomial of f . For,
recall (see [59]) that given a function f : [0, 1]n → R and an n-tuple m =
(m1,m2, ...,mn) with non-negative integer components, its Bernstein poly-
nomial Bmf : Rn → R is

Bmf (x) =
m1X
k1=0

m2X
k2=0

....
mnX
kn=0

f

µ
k1
m1

, ...,
kn
mn

¶ nY
i=1

µ
mi

ki

¶
xkii (1− xi)mi−ki .

In particular, the least-degree Bernstein polynomial B(1,...,1)f : Rn → R
associated with f is given by

B(1,...,1)f (x) =
X

k=(k1,...,kn)∈{0,1}n
f (k) xk11 · · · xknn (1− x1)1−k1 · · · (1− xn)1−kn .

To deÞne B(1,...,1) we only need to know the values of f at the vertices {0, 1}n,
and this makes it possible to associate B(1,...,1) to any pseudo-Boolean func-
tion. The polynomial (39) is, therefore, the least-degree Bernstein polynomial
B(1,...,1) of f : {0, 1}n → R.
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When f is grounded, the polynomial Bf is multilinear, that is, it is linear
in each variable xi. In particular, Bf is the unique multilinear extension of
f on Rn and it can be also written as

Bν (x) =
X

∅ 6=A∈Σ
ν (A)

Y
i∈A
xi
Y
j∈Ac

(1− xj) for each x ∈ Rn, (40)

where ν is the game associated with the grounded function f . The poly-
nomial Bν is called the Owen multilinear extension of the game ν, and it
was introduced by Owen [47]. In view of our previous discussion, Bν is the
least-degree Bernstein polynomial of the grounded pseudo-Boolean function
induced by the game.

Example 55 Consider the game ν ∈ Vn given by ν (A) = |A|2 for each
A ⊆ {1, ..., n}. We have

Bν (x) =
nX
i=1

xi + 2
X
i6=j
xixj.

N

Denote by Pn the vector space of all multilinear polynomials on Rn. The
next result provides two basis for Pn and a formula for the relative change
of basis.

Theorem 56 Monomials
Q
i∈A xi form a basis for the (2n − 1)-dimensional

vector space Pn, as well as the polynomials
Q
i∈A xi

Q
i∈Ac (1− xi). Given

P ∈ Pn, if

P (x) =
X

∅ 6=A∈Σ
αA
Y
i∈A
xi =

X
∅ 6=A∈Σ

βA
Y
i∈A
xi
Y
i∈Ac

(1− xi) ,

then
αA =

X
B⊆A

(−1)|A|−|B| βB. (41)

Proof. Each multilinear polynomial P can written as a linear combinationP
∅ 6=A∈Σ αA

Q
i∈A xi of monomials. Let us prove that such combination is

unique. As in [8], we proceed by induction on the size of the subsets A.
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Begin with |A| = 1. In this case αA = P (1A), and so the coefficient αA is
uniquely determined.
Assume next that all αA, with |A| ≤ k− 1, are uniquely determined. Let

A be such that |A| = k. Since P (1A) =
P

B⊆A αB, we have

αA = P (1A)−
X
B$A

αB.

The coefficient αA is then uniquely determined as all coefficients αB are
uniquely determined by the induction hypothesis. We conclude that the
monomials are a basis for Pn. As there are 2n − 1 monomials, the space Pn
has dimension 2n − 1.
There are 2n − 1 polynomials of the form Q

i∈A xi
Q
i∈Ac (1− xi). Hence,

they form a basis provided they are linearly independent. To see that this
the case, suppose

P (x) ≡
X

∅ 6=A∈Σ
βA
Y
i∈A
xi
Y
i∈Ac

(1− xi) = 0 for each x ∈ Rn.

Then P (1A) = 0 for each A, and so βA = 0. This shows that these polyno-
mials are linearly independent, and so a basis.
It remains to prove (41). Since P (1A) =

P
B⊆A αB for eachA ⊆ {1, ..., n},

we can obtain (41) by using a combinatorial argument that can be found in
[60, p. 48] and [10, Lemma 2.3]. ¥

Remark. Consider the functionM : Pn → Pn given by

M (P ) (1A) =
X
B⊆A

(−1)|A|−|B| P (1B) (42)

for each index set A ⊆ {1, ..., n}. This is the Mobius transform on Pn and,
by (41), it can be viewed as a change of basis formula.

By Theorem 56, the polynomials
Q
i∈A xi

Q
i∈Ac (1− xi) form a basis

for Pn and so each multilinear polynomial can be represented as in (39)
and viewed as the least-degree Bernstein polynomial of a suitable grounded
pseudo-Boolean function. Equivalently, each multilinear polynomial can be
viewed as the Owen polynomial of a suitable game.
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Moreover, by Theorem 56 we can represent the polynomialBf of a grounded
f in a unique way as

Bf (x) =
X

∅ 6=A∈Σ

ÃX
B⊆A

(−1)|A|−|B| f (1B)
!Y
i∈A
x. (43)

Hence, the relative Owen polynomial can be uniquely written as

Bν (x) =
X

∅ 6=A∈Σ

ÃX
B⊆A

(−1)|A|−|B| ν (B)
!Y
i∈A
x.

Let us get back to Þnite games. Denote by B the Owen correspondence
ν 7→ Bν between Vn and Pn. The next lemma collects a few simple properties
of B. Here eA denotes the game in Vn given by

eA (B) =

½
1 A = B
0 else

.

The family {eA}∅ 6=A∈Σ is clearly a basis in Vn, and any game ν can be rep-
resented by ν =

P
∅ 6=A∈Σ ν (A) eA.

Lemma 57 The Owen correspondence B is an isomorphism between the vec-
tor spaces Vn and Pn. Moreover:

(i) for each unanimity game uA, we have

BuA (x) =
Y
i∈A
xi for each x ∈ Rn;

(ii) for each game eA, we have

BeA (x) =
Y
i∈A
xi
Y
i∈Ac

(1− xi) for each x ∈ Rn;

(iii) for each charge µ, we have

Bµ (x) =
nX
i=1

µ (i)xi for each x ∈ Rn;
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(iv) a game ν is positive if and only if Bν (x) ≥ 0 for all x ∈ [0, 1]n.
(v) a game ν is convex if, for each i 6= j,

∂Bν (x)

∂xi∂xj
≥ 0 for all x ∈ (0, 1)n .

Proof. By Theorem 56, B is one-to-one. As it is also linear, B is an
isomorphism between the vector spaces Vn and Pn. Let us prove (i). AsQ
i∈A xi ∈ Pn (x) and B is a linear isomorphism, there exists a unique game

ν such that Bν (x) =
Q
i∈A xi. As ν (B) = Bν (1B), we have ν (B) = 1 if

B ⊇ A and ν (B) = 0 elsewhere. Hence, ν = uA.
As (ii) is trivially true, let us prove (iii). By Example 42, µ =

Pn
i=1 µ (i) δi,

where δi is the Dirac charge concentrated on i ∈ Ω. By the linearity of B
and by point (i),

Bµ (x) = BPn
i=1 µ(i)δi

(x) =
nX
i=1

µ (i)Bδi (x) =
nX
i=1

µ (i) xi,

as desired.
(iv). If ν ≥ 0, the Owen polynomial (40) has all positive coefficients. AsQ

i∈A xi
Q
j∈Ac (1− xj) ≥ 0 on [0, 1]n, we then have Bν (x) ≥ 0 on [0, 1]n.

The converse is obvious as ν (A) = Bν (1A) ≥ 0.
(v). This condition on the second derivatives implies that Bν is super-

modular on (0, 1)n. As it is continuous, Bν is then supermodular on the
hypercube [0, 1]n. In turn this implies the convexity of ν. ¥

Lemma 57(i) shows that unanimity games are the game counterpart of
monomials. By Theorem 56, monomials form a basis of the space Pn of mul-
tilinear polynomials. As a result, Theorem 41 can be viewed as a corollary of
Theorem 56, and the representation (21) as a consequence of the polynomial
representation (43).

Remark. As we did in Pn with (42), here as well we can deÞne a Mobius
transformM : Vn → Vn by

M (ν) (A) =
X
B⊆A

(−1)|A|−|B| ν (B)
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for each A ⊆ {1, ..., n}. The Mobius transform on Vn can be viewed as a
change of basis formula, between the basis {eA}∅ 6=A∈Σ and {uA}∅ 6=A∈Σ.

The next result completes Lemma 57 by showing what is the polynomial
counterpart of total monotonicity.

Lemma 58 A game ν is totally monotone if and only if its Owen polynomial
Bν is nonnegative on Rn+, i.e., Bν (x) ≥ 0 for each x ∈ Rn+.

Proof. Suppose ν is totally monotone. By Lemma 57, we can write

Bν (x) =
X

∅ 6=A∈Σ
ανABuA (x) =

X
∅ 6=A∈Σ

ανA
Y
i∈A
xi.

Hence, if ν is totally monotone, then Bν (x) ≥ 0 for all x ∈ Rn+. Conversely,
assume Bν (x) ≥ 0 for all x ∈ Rn+. We want to show that ν is totally
monotone, i.e., ανA ≥ 0 for each A. Suppose, per contra, that ανA < 0 for
some A. Consider the vector t1A ∈ Rn+, with t > 0. Then,

Bν (t1A) = α
ν
At
|A| + terms of lower degree.

Hence, for t large enough we have Bν (t1A) < 0, a contradiction. We conclude
that ανA ≥ 0 for each A, as desired. ¥

This lemma is the reason why we considered multilinear polynomials de-
Þned on Rn rather than on [0, 1]n, as it is usually the case. In fact, by
Lemma 57(iv) the positivity of the Owen polynomial on [0, 1]n only reßects
the positivity of the associated game, not its total monotonicity.
We now illustrate Lemmas 57 and 58 with couple of examples.

Example 59 Consider the game ν (A) = |A|2 of Example 55. As

Bν (x) =
nX
i=1

xi + 2
X
i6=j
xixj ≥ 0 for each x ∈ Rn+,

by Lemma 58 the game ν is totally monotone. N

Example 60 Consider the game associated with the multilinear polynomial

B (x) = x1x2 + x1x3 + x2x3 − εx1x2x3
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with ε > 0. As B (10/ε, 10/ε, 2/ε) < 0 for each ε > 0, this game is not totally
monotone. The game is positive and convex when ε ≤ 1. In fact,

B (x) = x1x2 (1− εx3) + x1x3 + x2x3 ≥ 0
on [0, 1]3, and so by Lemma 57(iv) is positive. On the other hand,

∂2B

∂xi∂xj
= 1− εxk ≥ 0,

on (0, 1)n, so that, by Lemma 57(v), the game is convex. N

In view of Lemma 58 is natural to consider the pointed convex cone
P+n =

©
P ∈ Pn : P (x) ≥ 0 for each x ∈ Rn+

ª
. It induces in the usual way an

order ºp on Pn as follows: given P1, P2 ∈ Pn, write P1 ºp P2 if P1−P2 ∈ P+n .
In turn, ºp induces a lattice structure and norm, denoted by k·kp, that makes
Pn an AL-space. For brevity, we omit the details of these by now standard
notions.
The next result summarizes the relations existing between the space of

Þnite games and the space of multilinear polynomials just introduced.

Theorem 61 There is a lattice preserving and isometric isomorphism B be-
tween the AL-spaces (Vn,º, k·k) and

³
Pn,ºp, k·kp

´
determined by the iden-

tity
P (x) =

X
∅ 6=A∈Σ

ν (A)
Y
i∈A
xi
Y
j∈Ac

(1− xj) for each x ∈ Rn.

The game ν is totally monotone if and only if the corresponding polynomial
P in Pn is nonnegative on Rn+.
Summing up, Theorems 50, 53, and 61 established the following lattice

isometries:³
R2|Σ|−1,≥, k·k1

´
T←→ (Vn,º, k·k) I←→ ¡

ba
¡
2Σ

0¢
,ºba, k·k

¢
l B³

Pn,ºp, k·kp
´

The resulting isometries I ◦ T−1 and B ◦ T−1 between R2|Σ|−1, ba ¡2Σ0¢, and
Pn are obviously well-known. The interesting part here is given by the possi-
bility of representing Þnite games in different ways, each useful for different
purposes.
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6.5 Convex Games

In this last subsection we show some noteworthy properties of Þnite convex
games. A Þrst important property has been already mentioned right after
Theorem 52: any Þnite game can be written as the difference of two convex
games.
To see other properties of Þnite convex games, we have to turn our atten-

tions to chains of subsets of Ω. As Ω = {ω1, ...,ωn}, the collection C given
by

{ω1} , {ω1,ω2} , ..., {ω1, ...,ωn}
forms a maximal chain, that is, no other chain can contain it. More generally,
given any permutation σ on {1, ..., n}, the collection Cσ given by©

ωσ(1)
ª
,
©
ωσ(1),ωσ(2)

ª
, ...,

©
ωσ(1), ...,ωσ(n)

ª
forms another maximal chain. All maximal chains in Ω have this form, and
so there are n! of them.
Let ν be any game. By Lemma 28, for each Cσ there is a charge µσ ∈

ba (Σ) such that µσ (A) = ν (A) for each A ∈ Cσ. Because of the maximality
of Cσ, the charge µσ is easily seen to be unique. We call µσ is the marginal
worth charge associated with permutation σ.
Marginal worth charges play a central role in studying Þnite convex

games. We begin by providing a characterization of convexity based on
them, due to Ichiishi [33].

Theorem 62 A Þnite game ν is convex if and only if all its marginal worth
charges µσ belong to the core.

Proof. �Only if�. Suppose ν is convex. We want to show that each µσ
belongs to core (ν). By Theorem 38, there exists µ ∈ core (ν) such that
µ (A) = ν (A) for each A ∈ Cσ. By the maximality of Cσ, µσ is the unique
charge having such property. Hence, µ = µσ, as desired.
�If�. Suppose µσ ∈ core (ν) for all permutations σ. Given any A and B,

let Cσ be a maximal chain containing A ∩B, A, and A ∪B. Then:

ν (A ∪B)+ν (A ∩B)−ν (A) = µσ (A ∪B)+µσ (A ∩B)−µσ (A) = µσ (B) .

As µσ ∈ core (ν), we have µσ (B) ≥ ν (B), and so ν is convex. ¥
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Turn now to cores of Þnite games. The Þrst observation to make is that
the core of a Þnite game is a subset of the |Ω|-dimensional space RΩ of the
form:

core (ν) =

(
x ∈ RΩ :

X
ω∈Ω

xω = ν (Ω) and
X
ω∈A

xω ≥ ν (A) for each A
)
.

Equivalently,

core (ν) =
\
A∈Σ

(
x ∈ RΩ :

X
ω∈A

xω ≥ ν (A)
)
∩
(
x ∈ RΩ :

X
ω∈Ω

xω ≤ ν (Ω)
)
,

that is, core (ν) is the set of solutions of a Þnite system of linear inequalities
on RΩ. Sets of this form are called polyhedra.
By Proposition 3 the core is weak∗-compact. In this Þnite setting, this

means that it is a compact subset of RΩ, where compactness is in the standard
norm topology of RΩ. The core of a Þnite game is, therefore, a compact
polyhedron. As a result, we have the following geometric property of cores
of Þnite games.

Proposition 63 The core of a Þnite game is a polytope in RΩ, that is, it is
the convex hull of a Þnite set.

Proof. By a standard result (see [1, pp. 233-234] or [68, p. 114]), compact
polyhedra are polytopes. ¥

The extreme points of a polytope are called vertices and they form a
Þnite set. As each element of a polytope can be represented as a convex
combination of its vertices, the knowledge of the set of vertices is, therefore,
key in describing the structure of a polytope.
All this means that, by Proposition 63, in order to understand the struc-

ture of the core it is crucial to identify the set of its vertices. This is achieved
by the next result, due to Shapley [63]. Interestingly, the marginal worth
charges, which by Theorem 62 always belong to the core of a convex game,
turn out to be exactly the sought-after vertices.

Theorem 64 Let ν be a Þnite convex game. Then, a charge µ ∈ ba (Σ) is a
vertex of core (ν) if and only if it is a marginal worth charge, that is, if and
only if there is a maximal chain Cσ such that ν (A) = µ (A) for all A ∈ Cσ.
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Proof. An element of a polytope is a vertex if and only if it is an exposed
point. Hence, it is enough to show that the marginal worth charges are the
set of exposed points of core (ν).
�If�. Suppose µσ is a marginal worth charge, with associated maximal

chain Cσ. We want to show that is an exposed point of core (ν). Since Cσ is
a maximal chain, there is an injective function fσ whose upper sets are given
by Cσ, i.e., Cσ = {(fσ ≥ t)}t∈R. For example, if Cσ =

©
Aσ(i)

ª
, take fσ =Pn

i=1 1Aσ(i). By the deÞnition of Choquet integral, we have
R
fdµσ =

R
fdν.

Since Cσ is maximal, µσ is the unique charge replicating ν on Cσ. Therefore,
given any other charge µ in core (ν), there exists A ∈ Cσ such that µσ (A) <
µ (A). Equivalently, there is some t ∈ R such that ν (fσ ≥ t) = µσ (fσ ≥ t) <
µ (fσ ≥ t). Hence,

R
fσdν =

R
fσdµσ <

R
fσdµ for all µ ∈ core (ν) with

µ 6= µσ, and this proves that µσ is an exposed point, as desired.
�Only if�. Suppose µ∗ is an exposed point of core (ν). We want to show

that µ∗ is a marginal worth charge, i.e., that there exists a maximal chain C∗
in Ω such that µ∗ (A) = ν (A) for each A ∈ C∗.
Let {µi}mi=1 be the set of all exposed points of core (ν), except µ∗. Set

k1 = kµ∗k ∨ (maxi=1,...,m kµik). Since µ∗ is an exposed point, there exists
f : Ω → R such that

R
fdµ∗ <

R
fdµ for all µ ∈ core (ν) with µ 6= µ∗. Set

k2 = mini=1,...,m
¡R
fdµi −

R
fdµ∗

¢
. Clearly, k2 > 0. Given 0 < ε < k2/2k1,

there is an injective g : Ω→ R such that kf − gk < ε. Hence, for each i we
have: Z

gdµi −
Z
gdµ∗ =

Z
gdµi −

Z
fdµi +

Z
fdµi −

Z
fdµ∗

+

Z
fdµ∗ −

Z
gdµ∗ ≥ −εk1 + k2 − εk1 > 0.

We conclude that
R
gdµ∗ <

R
gdµi for each i, and so

R
gdµ∗ <

R
gdµ for all

µ ∈ core (ν) with µ 6= µ∗.
Since ν is convex, by Theorem 38 it holds

R
gdν = minµ∈core(ν)

R
gdµ, and

so
R
gdν =

R
gdµ∗ <

R
gdµ for all µ ∈ core (ν) with µ 6= µ∗. The equalityR

gdν =
R
gdµ∗ implies that µ∗ (g ≥ t) = ν (g ≥ t) for all t ∈ R. Since g is

injective, the chain of upper sets {g ≥ t} is maximal in Ω, and it is actually
the desired maximal chain C∗. ¥
Denote by M (ν) the set of all marginal worth charges of a game ν.

By Theorem 64, we have core (ν) = co (M (ν)), and so all elements of the
core can be represented as convex combinations of marginal worth charges.
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This result has been recently generalized to inÞnite games by Marinacci and
Montrucchio [43].
Putting together Theorems 62 and 64, we have the following remarkable

property of Þnite games.

Corollary 65 A Þnite game ν is convex if and only if

M (ν) = exp (core (ν)) .

Therefore, given a game, the knowledge of its n! marginal worth charges
makes it possible to determine both whether the game is convex and what is
the structure of its core.
We close by observing that it is not by chance that in Corollary 65 we

use the set of exposed point exp rather than that of extreme points ext. For
a polytope these two sets coincide and they form the set of vertices. For
general compact convex sets, even in Þnite dimensional spaces, this is no
longer the case and exposed points are only a subset of the set of extreme
points. Inspection of the proof of Theorem 64 shows that what we have
actually proved is that marginal worth charges are the set of exposed points of
the core. The fact that they then turn out to coincide with the set of extreme
points is a consequence of properties of polytopes, which are immaterial for
the proof.
When extending the result to inÞnite convex games this observation is

important as in the more general setting � where exposed and extreme points
no longer necessarily coincide � the analog of marginal worth charges will
actually characterize the exposed points. We refer the interested reader to
[43] for details.

7 Concluding Remarks
1. In this chapter we only considered games deÞned on spaces having no
topological structure. There is a large literature on suitably �regular� set
functions deÞned on topological spaces, tracing back to Choquet [11]. We
refer the interested reader to Huber and Strassen [32] and Dellacherie and
Meyer [14]. Epstein and Wang [22] and Philippe, Debs, and Jaffray [49]
provide some decision-theoretic applications of capacities on topological do-
mains.
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2. In a series of papers, Gabriele Greco proposed an interesting notion of
measurability on algebras. A noteworthy feature of his approach is that,
unlike B (Σ), the resulting class of measurable functions forms a vector space.
Greco�s approach is, therefore, a further way to bypass the lack of vector
structure of B (Σ) that we discussed in some detail after Theorem 35. In
this chapter, we preferred to deÞne the Choquet functional on the smaller
domain B (Σ) and then extend it on the vector space B (Σ) using its Lipschitz
continuity, following in this way a standard procedure in functional analysis.
In any case, details on Greco�s approach can be found in his papers (e.g.,

[30] and [3]) and in Denneberg [17].

3. We did not consider here games and Choquet functionals deÞned on prod-
uct algebras. For details on this topic we refer the interested reader to Ben
Porath, Gilboa, and Schmeidler [4], Ghirardato [24], and to the references
therein contained.

4. Throughout the chapter we only considered Choquet functionals deÞned
on bounded functions. Results for the unbounded case can be found in Greco
[29], [31], and [3], and in Wakker [67].

5. Sipos [65] and [66] introduced a different notion of integral for capacities.
It coincides with the Choquet integral for positive functions, but the exten-
sion to general functions is done according to the standard procedure used
to extend the Lebesgue integral from positive functions to general functions,
based on the decomposition f = f+−f−. The resulting integral is in general
different from the Choquet integral and it turned out to be useful in some
applications. We refer the interested reader to Sipos� original papers and to
Denneberg [17].

6. Theorem 35 and Corollary 37 make it possible to use convex analysis
tools in studying convex games and their Choquet integrals. For example,
Carlier and Dana [9] and Marinacci and Montrucchio [43] use such tools to
study the structure of cores of convex games and the differentiability and
subdifferentiability properties of their Choquet integrals.
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